检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:代帅帅 吴伟杰[1,2] 牛犇 房祥军 陈慧芝[1] 陈杭君 郜海燕[1] Dai Shuaishuai;Wu Weijie;Niu Ben;Fang Xiangjun;Chen Huizhi;Chen Hangjun;Gao Haiyan(Institute of Food Science,Zhejiang Academy of Agricultural Sciences,Key Laboratory of Post-Harvest Fruit Processing,Key Laboratory of Post-Harvest Vegetable Preservation and Processing,Ministry of Agriculture and Rural Affairs,Key Laboratory of Fruit and Vegetable Preservation and Processing Technology of Zhejiang Province,Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing,Hangzhou 310021;State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products,Hangzhou 310021)
机构地区:[1]浙江省农业科学院食品科学研究所、农业农村部果品采后处理重点实验室、农业农村部蔬菜采后保鲜与加工重点实验室(部省共建)、浙江省果蔬保鲜与加工技术研究重点实验室、中国轻工业果蔬保鲜与加工重点实验室,杭州310021 [2]省部共建农产品质量安全危害因子与风险防控国家重点实验室,杭州310021
出 处:《中国食品学报》2023年第12期337-348,共12页Journal of Chinese Institute Of Food Science and Technology
基 金:“十四五”国家重点研发计划项目(2021YFD2100505)。
摘 要:食品贮藏和流通过程中会出现不同程度的品质劣变现象。随着人们对食品品质和安全重视程度的不断提高,开展食品贮运过程中的品质预测研究,对食品品质调控具有重要意义。本文综述机器学习在食品贮藏品质预测中的研究进展,包括常规的品质预测方法及其局限性。重点介绍近年发展快、应用广的集成学习和人工神经网络算法以及预测性能评估方法,展望机器学习在食品领域的未来发展趋势,为开展食品科学的交叉研究提供参考。During the process of food storage and circulation,there will be different degrees of quality deterioration.With the improvement of people's attention to food quality and safety,it is of great significance to carry out quality prediction research in the process of food storage and transportation for quality control.This paper reviews the research progress of machine learning in food storage quality prediction,including conventional quality prediction methods and limitations,and then focuses on the rapid development and wide application of integrated learning and artificial neural network algorithms,and prediction performance evaluation methods in recent years.Finally,it summarizes and looks forward to the future development trend of machine learning in the food field,and provides relevant references for the development of food science cross research.
分 类 号:TS205[轻工技术与工程—食品科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.166.40