检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱敏[1,2] 胡若海 卞京 ZHU Min;HU Ruohai;BIAN Jing(School of Electrical and Automation Engineering,Hefei University of Technology,Hefei 230009,China;Anhui Provincial Engineering Technology Research Center for Industrial Automation,Hefei 230009,China)
机构地区:[1]合肥工业大学电气与自动化工程学院,合肥230009 [2]工业自动化安徽省工程技术研究中心,合肥230009
出 处:《现代制造工程》2024年第3期38-44,共7页Modern Manufacturing Engineering
摘 要:针对传统蚁群算法在移动机器人路径规划中存在搜索盲目性、收敛速度慢及路径转折点多等问题,提出了一种基于改进蚁群算法的移动机器人路径规划算法。首先,利用跳点搜索(Jump Point Search,JPS)算法不均匀分配初始信息素,降低蚁群前期盲目搜索的概率;然后,引入切比雪夫距离加权因子和转弯代价改进启发函数,提高算法的收敛速度、全局路径寻优能力和搜索路径的平滑程度;最后,提出一种新的信息素更新策略,引入自适应奖惩因子,自适应调整迭代前、后期的信息素奖惩因子,保证了算法全局最优收敛。实验仿真结果表明,在不同地图环境下,与现有文献结果对比,该算法可以有效地缩短路径搜索的迭代次数和最优路径长度,并提高路径的平滑程度。In order to address the drawbacks of traditional ant colony algorithm in mobile robot path planning,such as blind search,slow convergence speed,multiple path turning points,it proposes a mobile robot path planning algorithm based on improved ant colony algorithm.Firstly,the Jump Point Search(JPS)algorithm is utilized to unevenly distribute initial phero-mones,reducing the likelihood of blind search during the early stages of the ant colony.Then,a Chebyshev distance weighting fac-tor and turning cost are introduced to improve the heuristic function,enhancing the algorithm′s convergence speed,global path op-timization capability,and smoothness of the search path.Finally,a novel pheromone update strategy is proposed that introduces an adaptive reward-punishment factor to adaptively adjust the pheromone reward-punishment factor during pre-and post-iteration pha-ses,ensuring the algorithm′s global optimal convergence.Experimental simulation results demonstrate that,in various map environ-ments and compared to existing literature results,the proposed algorithm effectively reduces the number of iterations and optimal path length required for path search while increasing path smoothness.
关 键 词:蚁群算法 路径规划 跳点搜索算法 移动机器人 信息素启发
分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.95.53