检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:高春艳[1] 赖光金 吕晓玲[1] 白祎扬 张明路[1] GAO Chun-yan;LAI Guang-jin;L Xiao-ling;BAI Yi-yang;ZHANG Ming-lu(School of Mechanical Engineering,Hebei University of Technology,Tianjin 300401,China)
出 处:《科学技术与工程》2024年第7期2617-2624,共8页Science Technology and Engineering
基 金:国家重点研发计划(2022YFB4701101);国家自然科学基金(U1913211)。
摘 要:听觉系统是机器人感知周围环境信息的重要途径之一,精准有效地进行声源定位,可极大提高移动机器人的感知与决策能力。将声源定位应用于危险环境救援与巡检具有重要工程意义。随着深度学习的广泛应用,引入卷积神经网络(convolutional neural networks, CNNs)的声源定位效果显著改善。将移动机器人声源定位研究从网络架构与改进、声音特征类型、数据仿真与增强,以及多模态信息融合四个角度进行综合对比及分析,并对技术的应用提出思考与展望。The auditory system is considered one of the crucial pathways for robots to perceive environmental information.The perception and decision-making capabilities of mobile robots are greatly enhanced by accurate and effective sound source localization,making it highly significant for applications in hazardous environment rescue and inspection.With the widespread adoption of deep learning,the effectiveness of sound source localization has been notably improved through the introduction of convolutional neural networks(CNNs).Sound source localization for mobile robots was comprehensively compared and analyzed from four perspectives:network architecture and improvements,types of sound features,data simulation and augmentation,as well as the fusion of multimodal information.Reflections and prospects on the application of the technology are also presented.
关 键 词:移动机器人 声源定位 卷积神经网络 麦克风阵列 到达方向估计
分 类 号:TP242.6[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28