检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林承浩 吴丽君[1] Lin Chenghao;Wu Lijun(School of Physics and Information Engineering,Fuzhou University,Fuzhou 350108,China)
机构地区:[1]福州大学物理与信息工程学院,福建福州350108
出 处:《网络安全与数据治理》2024年第3期27-33,共7页CYBER SECURITY AND DATA GOVERNANCE
基 金:国家自然科学基金项目(62271151);福建省自然科学基金项目(2021J01580)。
摘 要:针对基于混合构架的图像超分模型通常需要较高计算成本的问题,提出了一种基于CNN-Transformer混合构架的轻量图像超分网络STSR(Swin-Transformer-based Single Image Super-Resolution)。首先,提出了一种并行特征提取的特征增强模块(Feature Enhancement Block, FEB),由卷积神经网络(Convolutional Neural Network, CNN)和轻量型Transformer网络并行地对输入图像进行特征提取,再将提取到的特征进行特征融合。其次,设计了一种动态调整模块(Dynamic Adjustment, DA),使得网络能根据输入图像来动态调整网络的输出,减少网络对无关信息的依赖。最后,采用基准数据集来测试网络的性能,实验结果表明STSR在降低模型参数量的前提下仍然保持较好的重建效果。In order to address the problem that image super-segmentation models based on hybrid architectures usually require high computational cost,this study proposes a lightweight image super-segmentation network STSR(Swin-Transformer-based Single Image Super-Resolution)based on a hybrid CNN-Transformer architecture.Firstly,this paper proposes a Feature Enhancement Block(FEB)for parallel feature extraction,which consists of a Convolutional Neural Network(CNN)and a lightweight Transformer Network to extract features from the input image in parallel,and then the extracted features are fused to the features.Secondly,this paper designs a Dynamic Adjustment(DA)module,which enables the network to dynamically adjust the output of the network according to the input image,reducing the network's dependence on irrelevant information.Finally,some benchmark datasets are used to test the performance of the network,and the experimental results show that STSR still maintains a better reconstruction effect under the premise of reducing the number of model parameters.
关 键 词:图像超分辨率 轻量化 卷积神经网络 TRANSFORMER
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3