检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谭瑛[1] 张何萧 王浩[2] 李晓波 TAN Ying;ZHANG He-xiao;WANG Hao;LI Xiao-bo(College of computer Science and Technology,Taiyuan University of Science and Technology,Taiyuan 030024,China;School of electronic information engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China)
机构地区:[1]太原科技大学计算机科学与技术学院,太原030024 [2]太原科技大学电子信息工程学院,太原030024
出 处:《太原科技大学学报》2024年第2期119-124,共6页Journal of Taiyuan University of Science and Technology
基 金:国家自然科学基金(61876123);山西省自然科学基金(201901D111262)。
摘 要:实际工程优化中存在大量约束优化问题,且有一些优化问题目标函数和约束函数的评价非常耗时,导致该类问题无法直接使用传统优化算法求解。为此,为了在评价次数有限的情况下获得较好的可行解,针对昂贵单目标约束优化问题,为评价费时的目标函数和约束函数建立径向基函数(Radial Basis Function,RBF)预测模型,以及根据估值自适应选择个体的繁殖策略,以期能产生较好的可行解。在7个标准测试函数及3个工业测试函数上的测试结果表明,相比于其它现有针对昂贵约束问题的优化方法,本方法无需确保初始种群中必须有可行解,且能在优化目标和约束函数评价次数有限的情况下找到更好的解。In the real-world engineering optimization,there are a number of constrained problems,and some of them have time-consuming objective and constrained functions,resulting the evolutionary optimization algorithms are not able to be applied into this kind of problems.Thus,in order to achieve a feasible solution with better objective value in a limited computational budget,the radial basis function surrogate models are trained for objective and constrained functions,respectively.The propagation strategy of each solution will be adaptively determined according to its approximated values on objective and constrained functions,which is expected to improve a good feasible solution.The experimental results on seven benchmark problems and three engineering test problems show that compared to some state-of-the-art algorithms,the proposed method does not need to ensure that there is at least one feasible solution in the initial population,and can find better solutions in a limited computational cost.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.239.69