检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔岸[1,2] 张新颖 马耀辉 CUI An;ZHANG Xinying;MA Yaohui(College of Automotive Engineering,Jilin University,Changchun 130025,China;State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130025,China)
机构地区:[1]吉林大学汽车工程学院,长春130025 [2]吉林大学汽车仿真与控制国家重点实验室,长春130025
出 处:《中国惯性技术学报》2024年第3期234-241,共8页Journal of Chinese Inertial Technology
基 金:国家自然科学基金项目(51875238)。
摘 要:针对传统视觉同步定位与地图构建(SLAM)算法不能有效处理复杂环境中的动态及潜在动态目标而影响定位与建图性能的问题,提出一种基于Mask R-CNN神经网络以及ORB-SLAM3算法改进的视觉SLAM方法。针对动态目标,提出一种基于语义信息的运动一致性检验算法,使用自适应阈值的极线约束方法实现图像中动态特征点的精确剔除;针对潜在动态目标,提出一种改进的长期数据关联方法,通过增大关键帧选取密度及优化关键帧中的潜在动态目标信息,对算法的回环优化和地图融合过程进行改进,提高回环优化效果与地图复用性。在TUM数据集和真实场景中进行验证,实验结果表明与ORB-SLAM3算法相比,采用TUM数据集在低动态场景和高动态场景中的绝对轨迹均方根误差分别减小8.5%和65.6%;在真实场景下测试,所提算法的定位精度提高了62.5%。Aiming at the problem that traditional visual simultaneous localization and mapping(SLAM)algorithm cannot deal with dynamic and potential dynamic targets in complex environment effectively,which affects the localization and mapping performance,an improved visual SLAM method based on Mask R-CNN neural network and ORB-SLAM3 algorithm is proposed.A semantic information-based motion consistency checking algorithm is proposed for dynamic targets,using an adaptive thresholding polar line constraint method to achieve accurate rejection of dynamic feature points in images.An improved long-term data association method is proposed for potential dynamic targets.By increasing the key frame selection density and optimizing the potential dynamic target information in key frames,the loopback optimization and map fusion process of the algorithm are improved to enhance the loopback optimization effect and map reusability.The experimental results show that compared with the ORB-SLAM3 algorithm,the proposed algorithm reduces the root mean square error of absolute trajectory in the low dynamic scenes and high dynamic scenes of TUM data set by 8.5%and 65.6%respectively.The localization accuracy of the proposed algorithm has 62.5%improvement compared with ORB-SLAM3 in real scenario.
关 键 词:同步定位与地图构建 复杂环境 语义信息 自适应阈值 极线约束
分 类 号:U666.1[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3