基于数据挖掘的课程思政教学资源个性化推荐方法——以计算机类课程为例  被引量:4

Personalized Recommendation Method of Ideological and Political Teaching Resources Based on Data Mining

在线阅读下载全文

作  者:张婵[1] ZHANG Chan(School of Information Technology,Guangdong Industry Polytechnic,Guangzhou 510300,China)

机构地区:[1]广东轻工职业技术学院信息技术学院,广东广州510300

出  处:《广东轻工职业技术学院学报》2024年第2期65-68,共4页Journal of Guangdong Industry Polytechnic

基  金:广东省普通高校创新团队项目(自然)(021KCXTD064)。

摘  要:思政教学资源是指用于开展思政教育的各类资源,为提高课程思政教学质量,现提出基于数据挖掘的课程思政教学资源个性化推荐方法。首先,以计算机类课程为例开展研究,构建计算机类课程思政教学资源推荐模型,分析学习行为与对应的思政教学资源。其次,基于数据挖掘提取计算机类课程中思政教学资源特征,为后续的教学资源推荐提供保障。最后,实现思政教学资源个性化智能推荐。实验结果表明:基于数据挖掘的课程思政教学资源个性化推荐方法的准确性明显优于传统方法,证明该方法在课程教学方法上具有一定可行性。Ideological and political education resources refer to various resources used to carry out ideological and political education.In order to improve the quality of ideological and political education in courses,a personalized recommendation method for ideological and political education resources in computer courses based on data mining is proposed.Firstly,taking computer courses as an example,this study aims to construct a recommendation model for ideological and political education resources in computer courses,and analyze learning behavior and corresponding ideological and political education resources.Secondly,based on data mining,extract the characteristics of ideological and political teaching resources in computer courses,providing guarantees for subsequent teaching resource recommendations.Finally,achieve personalized and intelligent recommendation of ideological and political teaching resources.The experimental results show that the accuracy of the personalized recommendation method for ideological and political teaching resources in courses based on data mining is significantly better than traditional methods,proving the feasibility of this method in course teaching methods.

关 键 词:思政教学 计算机类课程 个性化推荐 数据挖掘算法 

分 类 号:G712[文化科学—职业技术教育学] TP391[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象