检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张天平[1] 刘涛[1] 章恩泽 ZHANG Tian-ping;LIU Tao;ZHANG En-ze(Department of Automation,College of Information Engineering,Yangzhou University,Yangzhou Jiangsu 225127,China)
机构地区:[1]扬州大学信息工程学院自动化专业部,江苏扬州225127
出 处:《控制理论与应用》2024年第10期1899-1912,共14页Control Theory & Applications
基 金:国家自然科学基金项目(62073283,62203381)资助.
摘 要:本文对具有时变输出约束和未建模动态的不确定严格反馈非线性多智能体系统,提出了一种最优包含控制方法.利用一种新型积分型障碍Lyapunov函数处理输出约束,利用动态信号处理未建模动态,利用动态面控制方法设计前馈控制器,结合自适应动态规划和积分强化学习方法设计最优反馈控制器,利用神经网络在线逼近相应代价函数,并设计权重更新律.理论分析证明了所有跟随者的输出收敛到领导者生成的凸包中,全部跟随者组成的闭环系统是半全局一致最终有界的,同时,跟随者的输出保持在给定的约束集中,代价函数达到最小.仿真结果验证了所提出方法的有效性.In this paper,an optimal containment control method is proposed for uncertain strict-feedback nonlinear multi-agent systems with time-varying output constraints and unmodeled dynamics.A new type integral barrier Lyapunov function is utilized to handle output constraints.A dynamical signal is applied to dispose of unmodeled dynamics.The dynamic surface control is used to design feedforward controller.The optimal feedback controller is constructed by applying adaptive dynamic programming and integral reinforcement learning techniques in which neural networks are utilized to approximate the relevant cost functions online with established weight updating laws.By theoretical analysis,the outputs of all followers converge to the convex hull spanned by all leaders,and the closed-loop control system composed of the whole followers is proved to be cooperative semi-globally uniformly ultimately bounded(SGUUB).In the mean time,the outputs maintain in the provided constraint sets and cost functions achieve minimization.A simulation example is presented to illustrate the feasibility of the developed approach.
关 键 词:自适应动态规划 积分强化学习 最优控制 动态面控制 积分型障碍Lyapunov函数 多智能体系统
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.149.165