检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:瞿广跃 杨澜[1] 袁梦 房山 刘松岩 QU Guangyue;YANG Lan;YUAN Meng;FANG Shan;LIU Songyan(School of Information Engineering,Chang'an University,Xi’an 710018,China)
出 处:《汽车安全与节能学报》2024年第5期689-701,共13页Journal of Automotive Safety and Energy
基 金:国家自然科学基金项目(52472446);国家重点研发计划项目(2021YFB2501205);陕西省留学人员科技活动择优资助项目(2023001)。
摘 要:为了提高自动驾驶汽车在人车混行交叉口场景下的行车安全性,提出了一种面向自动驾驶汽车的信号交叉口行人多模态轨迹预测方法。考虑社会生成对抗网络模型(SGAN)的社会属性,将行人历史轨迹作为输入,通过生成器与判别器交替训练,采用交叉熵损失函数进行模型优化,提出基于SGAN的行人轨迹预测模型;建立行人自驱力、行人间交互力、斑马线边界力和信号灯作用力的4种约束力模型,提出基于社会力模型(SFM)的行人轨迹预测模型,采用粒子群算法对SFM的不可测量参数进行标定;基于AdaBoost算法对SGAN和SFM的预测结果进行融合,通过多个弱学习器迭代训练并动态优化各模型权重,以提高模型预测准确性;实验基于西安市某交叉口行人数据进行对比验证。结果表明:相比于单一SFM模型和单一SGAN模型,该文方法的平均位移误差(ADE)和最终位移误差(FDE)分别提高了约21.7%和10.5%,尤其在绕行超越、结伴等复杂行为场景中,该方法能够实现更精准的行人轨迹预测。A multi-modal trajectory prediction method of pedestrians at signalized intersections for autonomous vehicles was proposed to improve the driving safety of autonomous vehicles in the mixed traffic with pedestrian and vehicles.Firstly,considering the social attributes of the Social Generative Adversarial Network(SGAN)model,the pedestrian history trajectory was taken as the model input,the generator and discriminator were trained alternately,and the cross-entropy loss function was used to optimize the model,and then a pedestrian trajectory prediction model based on SGAN was proposed.Secondly,four binding force models based on pedestrian self-drive,pedestrian interaction,zebra crossing boundary force and traffic light force were established,and then a pedestrian trajectory prediction model based on Social Force Model(SFM)was proposed.The particle swarm optimization algorithm was used to calibrate the non-measurable parameters of SFM.Finally,based on the AdaBoost algorithm,the prediction results of SGAN and SFM were fused,and the weights of each model were iteratively trained and optimized dynamically by multiple weak learners to improve the prediction accuracy of the model.Based on the pedestrian data of an intersection in Xi'an city,the experimental analysis and verification were carried out.The results show that the average displacement error(ADE)and final displacement error(FDE)of the proposed method are increased by about 21.7%and 10.5%,respectively,compared with the single SFM model and the single SGAN model.The proposed model can realize more accurate pedestrian trajectory prediction.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49