正负刚度并联悬架系统的阵发与激变动力学  

Intermittent and Crisis Dynamics of Positive and Negative Stiffness Parallel Suspension System

在线阅读下载全文

作  者:石升建 刘润 苏晗 张文[1] 乐源[1] Shi Shengjian;Liu Run;Su Han;Zhang Wen;Yue Yuan(School of Mechanics and Aerospace Engineering,Southwest Jiaotong University,Chengdu 610031,China)

机构地区:[1]西南交通大学力学与航空航天学院,成都610031

出  处:《动力学与控制学报》2024年第11期38-46,共9页Journal of Dynamics and Control

基  金:国家自然科学基金资助项目(12072291)。

摘  要:基于空气弹簧和负刚度弹簧并联的刚度系统,建立单自由度1/4车辆悬架模型.根据延拓打靶法对悬架系统的周期解进行追踪并依据Floquet理论判断其稳定性,利用胞映射原理绘制出系统随参数变化时吸引子的吸引域,分析吸引域在不同参数下的演变过程.结果表明:悬架系统在周期激励下会发生鞍结分岔、周期倍化分岔等局部分岔行为;揭示了系统由周期解转变为混沌状态的路径主要为与鞍结分岔相关的I型阵发;不稳定周期轨道与混沌吸引子碰撞时系统会产生的边界激变、内部激变等动力学行为,致使混沌吸引子发生消失、变大.Based on a stiffness system consisting of an air spring and a negative stiffness spring connected in parallel,a single-degree-of-freedom 1/4 vehicle suspension model was established.The continuation shooting method was applied to track the periodic solutions of the suspension system,and their stability was determined by the Floquet theory.The basin of the system were depicted using the principle of cell mapping,and the evolution of the basin under different parameters was analyzed.The results show that the suspension system exhibits local bifurcation behaviors such as saddle-node bifurcation and period-doubling bifurcation under periodic excitation.The study reveals that the transition from periodic solutions to chaos in the system is mainly associated withΙ-type intermittent related to saddle-node bifurcation.When the unstable periodic orbit collides with the chaotic attractor,the system will produce dynamic behavior such as boundary crisis and internal crisis,which will cause the chaotic attractor to disappear and become larger.

关 键 词:车辆悬架 胞映射 阵发性 分岔 激变 

分 类 号:O313[理学—一般力学与力学基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象