检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐亮亮 王建平 张家高 唐杨 夏春婷 XU Liangliang;WANG Jianping;ZHANG Jiagao;TANG Yang;XIA Chunting(School of Mechanical and Automotive Engineering,Anhui Polytechnic University,Wuhu 241000,China)
机构地区:[1]安徽工程大学机械与汽车工程学院,安徽芜湖241000
出 处:《安徽工程大学学报》2025年第1期8-14,共7页Journal of Anhui Polytechnic University
基 金:芜湖市科技计划重点研发项目(2022yf05)。
摘 要:在城市内狭窄垂直车位的自动泊车,对车辆的控制精度要求更高。为了有效辅助车辆在垂直车位的泊车,提高泊车的安全性,研究提出了一种基于粒子群算法优化的模型预测跟踪算法。通过构建车辆的运动学模型,对车辆进行路径分析,设计了车辆的泊车控制路径,同时引入粒子群算法求解预测控制速率,实现泊车过程的连续优化控制。通过CarSim/Simulink联合仿真证明了在模型预测中引入粒子群优化算法可以满足在狭窄垂直车位的泊车需求。Automatic parking in narrow vertical spaces in urban areas requires higher control accuracy of the vehicle.In order to effectively assist the vehicle parking in vertical spaces and improve the safety of parking,this paper proposes a model prediction tracking algorithm based on optimization of the particle swarm algorithm,by constructing a kinematic model of the vehicle,conducting path analysis of the vehicle,and designing the parking path control of the vehicle.Meanwhile,the particle swarm algorithm is introduced to solve the predicted control rate to realize the continuous optimization control of the parking process.The joint simulation of CarSim/Simulink proves that the particle swarm optimization algorithm introduced in the model prediction can satisfy the parking demand in the narrow vertical parking space.
关 键 词:自动泊车 粒子群算法 CARSIM 垂直泊车 联合仿真
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49