基于观测器的复杂网络事件触发量化同步控制  

Observers-based event-triggered quantization synchronization control for complex networks

在线阅读下载全文

作  者:黄玲[1,2] 王云飞 张恒艳 HUANG Ling;WANG Yun-fei;ZHANG Heng-yan(School of Automation,Harbin University of Science and Technology,Harbin Heilongjiang 150080,China;Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration,Harbin Heilongjiang 150080,China;School of Electrical Engineering,Suihua University,Suihua Heilongjiang 152061,China)

机构地区:[1]哈尔滨理工大学自动化学院,黑龙江哈尔滨150080 [2]黑龙江省复杂智能系统与集成重点实验室,黑龙江哈尔滨150080 [3]绥化学院电气工程学院,黑龙江绥化152061

出  处:《控制理论与应用》2025年第3期511-520,共10页Control Theory & Applications

摘  要:针对复杂网络状态不可得的情况,设计一种基于观测器的具有事件触发策略的量化同步控制器.为了减少通信次数和计算负担,引入事件触发方案和对数量化器.首先,对不可测的系统状态设计分布式状态观测器,考虑事件触发方案和量化对系统的影响,建立同步误差和观测误差的联合误差模型;其次,依据Lyapunov稳定性理论、Schur补引理、柯西不等式,得到具有线性矩阵不等式形式(LMI)的联合误差系统渐近稳定的充分条件,同时给出状态观测器和控制器增益求解方法;然后,证明对于所提出的事件触发条件,芝诺(Zeno)行为可以被排除,并且得到事件触发间隔的最小下界;最后,通过一个数值例子验证所提方法的有效性.A quantization controller based on observers with event-triggered schemes is designed for the situation where the state of complex network is not available.In order to reduce communication times and computation burden,event-triggered schemes and logarithmic quantizers are introduced.Firstly,a distributed state observer is designed for the unmeasurable system state,and a joint error model of synchronization error and observation error is established considering the influence of event-triggered schemes and quantization on the system.Secondly,according to the Lyapunov stability theory,Schur Complement lemma and Cauchy Inequality,the sufficient conditions for the asymptotic stability of the joint error system with linear matrix inequality(LMI)form are obtained.At the same time,the state observer and controller gain solving methods are given.Then,it is proved that the Zeno behaviour can be excluded for the proposed event-triggered schemes,and that the minimum lower bound of the event-triggered interval is obtained.Finally,a numerical example is given to validate the effectiveness of the proposed method.

关 键 词:复杂网络 事件触发策略 观测器 对数量化器 同步控制 

分 类 号:G63[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象