检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨劲松 杨紫怡 袁晓[1] YANG Jin-Song;YANG Zi-Yi;YUAN Xiao(College of Electronics and Information Engineering,Sichuan University,Chengdu 610065,China)
出 处:《四川大学学报(自然科学版)》2025年第2期425-432,共8页Journal of Sichuan University(Natural Science Edition)
基 金:国家自然科学基金(62171303)。
摘 要:本文旨在论证理想的分数阶数字微分器系数等于Sinc函数分数阶导数整数点的取值,利用不完全伽马函数和超几何函数分别表示出理想分数阶数字微分器的系数和Sinc函数分数阶导数.根据不完全伽马函数的定义与性质,从理论上推导出理想的分数阶数字微分器系数的解析表示.根据正余弦函数的泰勒级数展开与超几何函数定义,从理论上推导出理想的分数阶数字微分器系数的超几何函数表示.通过与Sinc函数分数阶导数的高精度数值算法结果比较,验证了利用不完全伽马函数与超几何函数精确表示理想的分数阶数字微分器系数与Sinc函数分数阶导数的可行性.This paper demonstrates that the coefficients of an ideal fractional-order digital differentiator are equal to the values of the fractional-order derivatives of the Sinc function at integer points.The coefficients of the ideal fractional-order digital differentiator and the fractional-order derivatives of the Sinc function are represented using the incomplete gamma function and the hypergeometric function,respectively.Based on the definition and properties of the incomplete gamma function,the analytical representation of the coefficients of the ideal fractional-order digital differentiator is theoretically derived.Furthermore,by utilizing the Taylor series expansion of sine and cosine functions and the definition of the hypergeometric function,the hypergeometric function representation of the coefficients of the ideal fractional-order digital differentiator is theoretically derived.The feasibility of accurately representing the coefficients of the ideal fractional-order digital differentiator and the fractional-order derivatives of the Sinc function using the incomplete gamma function and the hypergeometric function is verified by comparison with high-precision numerical algorithm results for the fractional-order derivatives of the Sinc function.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.239