检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张墨逸[1] 袁小芳 张彬 陈海燕[1] ZHANG Mo-yi;YUAN Xiao-fang;ZHANG Bin;CHEN Hai-yan(School of Computer and Communication,Lanzhou University of Technology,Lanzhou 730050,China)
机构地区:[1]兰州理工大学计算机与通信学院,甘肃兰州730050
出 处:《计算机技术与发展》2025年第4期93-99,共7页Computer Technology and Development
基 金:国家自然科学基金项目(62161019)。
摘 要:旋转无关手写字符识别对提高手写识别系统的实际应用准确性和鲁棒性至关重要。针对旋转字符识别准确率低、旋转不变坐标卷积神经网络(RIC-CNN)模型耗时长的问题,提出一种新的旋转无关手写字符识别方法。首先,在原RIC-CNN模型中引入非分离旋转矩不变量方法,并创建特征提取层,提取旋转不变数据特征,解决数据提取不充分的问题。接着,应用基于正交投影的PCA-LDA算法,该算法通过引入随机矩阵对特征进行正交投影,并将主成分分析(PCA)和线性判别分析(LDA)进行结合构建协方差矩阵和散射矩阵,从特征中筛选出有效的旋转不变特征,提高识别精度。最后,采用全连接神经网络(FCNN)对提取的特征进行分类识别。实验在空中手写数据集、MNIST数据集、中科院数据集与哈工大数据集上进行了验证。结果表明,该方法显著提升了旋转手写字符的识别精度,其中数字旋转数据的准确率达到了97.72%。以MNIST数据集为例,该方法识别字符的时间仅为14.16秒,相比单独使用RIC-CNN模型,时间成本减少了19.66秒,充分证明了该方法的有效性。Rotation-independent handwriting character recognition is essential to improve the accuracy and robustness of handwriting recognition systems in practical applications.Aiming at the problems of low accuracy of rotated character recognition and long time consumption of the Rotation Invariant Coordinate Convolutional Neural Network(RIC-CNN)model,a new rotation-independent handwritten character recognition method was proposed.Firstly,the non-detached rotational moment invariant method was introduced into the original RIC-CNN model,and a feature extraction layer was created to extract the rotational invariant data features to solve the problem of insufficient data extraction.Then,the PCA-LDA based on orthogonal projection was applied,which introduced random matrices to project the features orthogonally,and combined Principal Component Analysis(PCA)and Linear Discriminant Analysis(LDA)to construct covariance matrix and scattering matrix,so as to screen out effective rotational invariant features from the features and improve the recognition accuracy.Finally,the Fully-Connected Neural Network(FCNN)was used to classify and identify the extracted features.The experiments were verified on the aerial handwriting dataset,the MNIST dataset,the Chinese Academy of Sciences dataset and the Harbin Institute of Technology dataset.The results show that the proposed method significantly improves the recognition accuracy of rotated handwritten characters,and the accuracy of rotation data reaches 97.72%.Taking the MNIST dataset as an example,the time for the proposed method to recognize characters is only 14.16 seconds,which is 19.66 seconds less than the RIC-CNN model alone,which fully proves the effectiveness of the method.
关 键 词:手写字符识别 非分离旋转矩不变量 旋转不变坐标卷积神经网络 正交投影 主成分分析 线性判别分析 全连接神经网络
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13