基于ADE-Newton算法的3-RPS并联机构位置正解分析  

Forward Position Analysis of 3-RPS Parallel Mechanism based on ADE-Newton algorithm

在线阅读下载全文

作  者:彭斯洋 李平[2] 车林仙[3] 杜力[2] 

机构地区:[1]重庆理工大学机械工程学院,重庆400054 [2]重庆工商大学制造装备机构设计与控制重庆市重点实验室,重庆400067 [3]重庆工程职业技术学院,重庆402260

出  处:《机械传动》2018年第4期112-118,139,共8页Journal of Mechanical Transmission

基  金:重庆市教委科学技术研究项目(KJ1600606)

摘  要:将智能算法和数值迭代法相结合,构造一种组合式算法——自适应差分进化算法-Newton迭代(Adaptive differential evolution and Newton iteration,ADE-Newton)算法。以3-RPS并联机构为研究对象,详细阐述利用ADE-Newton算法求并联机构位置正解的原理和步骤。为了验证ADENewton算法的有效性和通用性,给出3-RPS并联机构在不同驱动杆长条件下的数值算例。仿真结果表明,ADE-Newton算法能够以较高的效率求得不同驱动杆长条件下的全部高精度位置正解。还比较了ADE-Newton、人工蜂群、粒子群和差分进化算法求3-RPS并联机构位置正解的性能,比较结果显示,ADE-Newton算法的计算效率、收敛精度、稳健性以及可靠性高于对比算法。By a combination of the intelligent optimization algorithm and the numerical iteration method,a combined algorithm called Adaptive differential evolution and Newton iteration( ADE-Newton) algorithm is constructed. Taking 3-RPS parallel mechanism for research object and the principle and steps of using ADE-Newton algorithm to solve the forward position of parallel mechanism are expounded in detail. In order to verify effectiveness and generality of ADE-Newton algorithm,the numerical examples of the forward position of different length of driving shaft length are given. The results show that ADE-Newton algorithm can obtain all high accuracy solutions in condition of different length of driving shaft with higher efficiency and lighter computational cost. And the performances of artificial bee colony,particle swarm optimization and differential evolution algorithms in solving forward position of 3-RPS parallel mechanism is compared. The results show that the computational efficiency,accuracy robustness and reliability of the ADE-Newton algorithm are higher than those of the contrast algorithm.

关 键 词:并联机构 位置正解 自适应差分进化算法 NEWTON迭代法 

分 类 号:TH112[机械工程—机械设计及理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象