检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《系统工程与电子技术》2003年第3期330-334,共5页Systems Engineering and Electronics
摘 要:支持向量机是基于统计学习理论的新一代机器学习技术。由于使用结构风险最小化原则代替经验风险最小化原则,使它较好地解决了小样本情况下的学习问题。又由于采用了核函数思想,使它把非线性问题转化为线性问题来解决,降低了算法的复杂度。提出了一种基于支持向量机的模型预测控制结构,并使用一个新的随机搜索优化算法来求解预测控制律,计算机仿真证明了所设计的控制算法的正确性和有效性。Support vector machines(SVM)are a new-generation machine learning technique based on the statistical learning theory. They can solve small-sample learning problems better by using Structural Risk Minimization in place of Experiential Risk Minimization. Moreover, SVMs can change a nonlinear learning problem in to a linear learning problem in order to reduce the algorithm complexity by using the kernel function idea. A nonlinear predictive control framework is presented, in which nonlinear plants are modeled on a support vector machine. The predictive control law is derived by a new stochastic search optimization algorithm. At last a simulation example is given to demonstrate the proposed approach.
关 键 词:非线性模型 支持向量机 模型预测控制 随机搜索 MPC
分 类 号:O231[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222