检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:雷成[1] 胡占义[1] 吴福朝[1] TSUI H T
机构地区:[1]中国科学院自动化研究所模式识别国家重点实验室,北京100080 [2]香港中文大学电子工程系
出 处:《计算机学报》2003年第5期587-597,共11页Chinese Journal of Computers
摘 要:主要针对传统的基于Kruppa方程的摄像机自标定算法的欠鲁棒性提出了一种新的二步式标定方法 .在新标定方法中 ,首先利用传统的LM优化算法或遗传算法求解出Kruppa方程中通常需要被消去的比例因子 ,然后再利用线性方法完成对摄像机的标定 .大量的仿真和真实图像实验表明 ,该方法可以大大提高基于Kruppa方程标定算法的鲁棒性及标定精度 .Conceptually speaking, nearly all the self-calibration techniques reported in the literature can be classified as either the absolute conic based ones or the absolute quadric based ones, and all such techniques rely on the so-called Kruppa equation or its variants implicitly or explicitly. The key problem in the Kruppa equations (at least 3 for calibrating a full perspective camera) resides in their associated unknown scale factors that make the calibration problem inherently non-linear, and not robust. In this paper, a two-step camera self-calibration technique is proposed. In the new technique, the unknown scale factors from the Kruppa equations is eliminated as those in the literature. Instead, first the unknown scale factors are determined via a genetic algorithm or LM algorithm. Then the camera intrinsic parameters are computed by a linear method with the scale factors obtained in the first step. Extensive simulations as well as experiments with real images show the new technique can substantially improve the robustness aspect and increase the calibration accuracy.
关 键 词:计算机视觉 二维图像 摄像机自标定方法 KRUPPA方程
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30