检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨忠鹏[1]
出 处:《厦门大学学报(自然科学版)》2003年第4期431-434,共4页Journal of Xiamen University:Natural Science
基 金:福建省教育厅科研基金(JB01206)
摘 要:完全非负矩阵在Hadamard乘积意义下是不封闭的。对于两个三对角完全非负矩阵A=(a_(ij)),B=(b_(ij)),Markham证明了它们的Hadamard乘积的行列式满足Oppenheim不等式。我们应用完全非负矩阵的Hadamard中心的性质,改进了Markham的相应结果,给出了新的下界(A_1为删去第一行的A的主子矩阵):det(AB)≥(multiply from i=1 to n b_(ii))detA+(multiply from i=1 to n a_(ii))detB-detAdetB+(detA)((multiply from i=2 to n a_(ii)/detA_1)-1)(b_(11)detB_1-detB)+(detB)((multiply from i=2 to n b_(ii)/detB_1)-1)(a_(11)detA_1-detA)。Totally nonnegative matrices are not closed in the sense of Hadamard product. For two tridiag-onal totally nonnegative matrices A = (aij ) ,B =(bij), Markham proved that the determinant of their Hadamard product satisfies Oppenheim's inequality. Applying the properties of Hadamard core for totally non-negative matrices, we obtain the new lower bounds of the determinant about Hadamard product for two tridiagonal totally nonnegative matricies,and improve the corresponding results derived by Markham. Our conclusion is as follows: where A1 is principal submatrix of a obtained by deleting its first row and column.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229