完全非负矩阵上的Oppenheim不等式的推广  被引量:2

The Generalization of Oppenheim's Inequalities for Totally Nonnegative Matrices

在线阅读下载全文

作  者:杨忠鹏[1] 

机构地区:[1]莆田学院数学系,福建莆田351100

出  处:《厦门大学学报(自然科学版)》2003年第4期431-434,共4页Journal of Xiamen University:Natural Science

基  金:福建省教育厅科研基金(JB01206)

摘  要:完全非负矩阵在Hadamard乘积意义下是不封闭的。对于两个三对角完全非负矩阵A=(a_(ij)),B=(b_(ij)),Markham证明了它们的Hadamard乘积的行列式满足Oppenheim不等式。我们应用完全非负矩阵的Hadamard中心的性质,改进了Markham的相应结果,给出了新的下界(A_1为删去第一行的A的主子矩阵):det(AB)≥(multiply from i=1 to n b_(ii))detA+(multiply from i=1 to n a_(ii))detB-detAdetB+(detA)((multiply from i=2 to n a_(ii)/detA_1)-1)(b_(11)detB_1-detB)+(detB)((multiply from i=2 to n b_(ii)/detB_1)-1)(a_(11)detA_1-detA)。Totally nonnegative matrices are not closed in the sense of Hadamard product. For two tridiag-onal totally nonnegative matrices A = (aij ) ,B =(bij), Markham proved that the determinant of their Hadamard product satisfies Oppenheim's inequality. Applying the properties of Hadamard core for totally non-negative matrices, we obtain the new lower bounds of the determinant about Hadamard product for two tridiagonal totally nonnegative matricies,and improve the corresponding results derived by Markham. Our conclusion is as follows: where A1 is principal submatrix of a obtained by deleting its first row and column.

关 键 词:完全非负矩阵 OPPENHEIM不等式 HADAMARD乘积 行列式 三对角矩阵 Hadarnard中心 

分 类 号:O151.21[理学—数学] O151.25[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象