检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学应用数学系 [2]中国科学院数学研究所,北京100080
出 处:《武汉大学学报(理学版)》2003年第3期284-288,共5页Journal of Wuhan University:Natural Science Edition
基 金:国家自然科学基金资助项目 ( 10 17110 6)
摘 要:考虑一个具有离散时滞的非自治的捕食 食饵系统 .系统是由 3种群组成的 ,其中一个为捕食者 ,另两个为食饵种群 .本文的目的是给出时滞对系统的持续生存是无害的 ,从而确定了系统的周期解全局吸引的条件 .One of the most interesting topics in mathematical ecology concerns the permanence of ecological systems.In this paper,we consider a nonautonomous three-species(two-prey,one-predator) predator-prey Lotka-Volterra system with discrete delays.We get the ultimately lower and upper bounds for the positive solution by estimate of inequatity and constructing suitable persistemce functionals.If assuming environment varies periodly,we obtain the existence,uniqueness and global attractivity of positive periodic solution for periodic system by using fixed point theorem.Liapunov function and M-matrix theory.Further conditions are established for the permancnce of the populations and the global attractivity of positive periodic solution.These conditions is not complexity and acceptable.In addition,we also discuss the effect of delay permanence and positive periodic solution of the system.These results demonstrate that time delays are harmlas for uniform persistence of the populations and the existence of positive periodic solution.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28