基于混沌变异蝙蝠算法的无人机战场侦察目标跟踪  被引量:7

UAV Object Tracking for Battlefield Reconnaissance Based on a Chaotic-mutated Bat Algorithm

在线阅读下载全文

作  者:孙健[1,2] 张奇夫 惠斌 常铮[1] 徐忠民[1] 

机构地区:[1]中国科学院沈阳自动化研究所光电信息技术研究室,辽宁沈阳110016 [2]中国科学院大学,北京100049

出  处:《信息与控制》2018年第2期140-148,共9页Information and Control

摘  要:为解决粒子滤波重采样过程中的粒子贫化现象,采用了新型启发式算法——混沌变异蝙蝠算法对粒子滤波进行改进,从而实现无人机的目标跟踪.蝙蝠算法是一种基于蝙蝠根据回声频率和响度变换定位机制的群智能启发算法,该方法在许多优化问题中具有良好的性能.在粒子滤波的过程中采用蝙蝠优化算法进行粒子择优,并利用混沌变异策略对蝙蝠算法进行了改进,从而避免后期重采样产生的粒子贫化等问题.本方法用于无人机在战场中进行准确的目标侦察和跟踪,为验证所提出的跟踪策略的有效性,采用传统粒子滤波的跟踪方法与之进行仿真对比实验.实验结果表明,所提方法性能优于其它对比方案且获取的目标函数适应度值高于标准的优化算法.To solve the particle dilution problem of particle filter during the resampling process,we propose a novel unmanned aerial vehicle( UAV) object tracking algorithm based on a new heuristic algorithm called chaotic mutated bat algorithm. The bat algorithm( BA) is inspired by the echolocation mechanism of bats in accordance with pulse rates variance of emission and loudness. It has been proven effective in a wide range of optimization problems. We adopt the BA in UAV object tracking by using particle filter,and a chaotic-mutated improvement is proposed by using chaotic theory and a mutated operator for BA. We were able to resolve the particle dilution problem in the particle filter. To justify the effectiveness of the proposed method,comparative tracking simulations are conducted by employing the standard particle filter. Experimental results show that the proposed method is superior to other methods,which achieves a higher fitness value than standard optimization algorithms.

关 键 词:蝙蝠算法 粒子滤波 无人机 目标跟踪 

分 类 号:E91[军事] E926.3[军事—军事装备学] TP18[兵器科学与技术—武器系统与运用工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象