检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连交通大学理学院,辽宁 大连
出 处:《应用数学进展》2023年第11期4654-4660,共7页Advances in Applied Mathematics
摘 要:扩展的BBM方程是一个含有非线性项的偏微分方程。在物理学中,用非线性偏微分方程来描述物理模型非常普遍;在数学中,非线性偏微分方程可以用来证明Poincaré猜想和Calabi猜想的合理性。利用辅助方程,通过行波变换转化为常微分方程后,借助辅助方程来求解转化后的常微分方程,进而可以得到偏微分方程的精确解。为此,通过行波变换及辅助方程的求解思路对BBM方程进行了研究,并得到了该方程双曲正切函数及三角函数形式的精确解。据此可推广应用至其他类似的非线性偏微分方程中。Extended BBM Equations are partial differential equations with nonlinear terms. In physics, it is very common to use nonlinear partial differential equation to describe physical models;in mathe-matics, nonlinear partial differential equation can be used to prove the rationality of Poincar é con-jecture and Calabi conjecture. The auxiliary equation can be transformed into Ordinary differential equation by traveling wave transformation, and then the transformed Ordinary differential equa-tion can be solved by the auxiliary equation, and then the exact solution of partial differential equa-tion can be obtained. For this reason, the BBM equation is studied through traveling wave trans-formation and the idea of solving auxiliary equations, and the exact solutions of the equation in the form of hyperbolic tangent function and Trigonometric functions are obtained. Therefore, it can be extended to other similar nonlinear partial differential equation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.169.138