The work was supported by grants from the National Natural Science Foundation of China (No. 90717001) and the Shanghai Science and Technology Development Fund (No. 2008XD14049).
Many phytohormones regulate plant growth and development through modulating protein degradation. In this study, a proteome study based on multidimensional non-gel shotgun approach was performed to analyze the auxin-in...
Acknowledgments This study was supported by the Chinese Academy of Sciences and National Natural Science Foundation of China (Grants 30425029, 30421001, 90717001). We greatly thank Prof Hong Ma (Penn. State University, USA) for critical reading and writing improvement and Prof Nam-Hai Chua (The Rockefeller University, USA) for helpful comments. We thank the Salk Institute Genomic Analysis Laboratory for providing the sequence-indexed Arabidopsis T-DNA insertion mutants, and Prof Sheng Luan (University of California, Berkeley, USA) for providing the construct pATC940. We thank Prof Hong-Quan Yang (SIPPE, CAS) for providing LexA yeast two-hybrid system and Prof Zhi-Yong Wang (The Stanford University, USA) for providing the BRI1 antibody. We thank Mr Xiao-Shu Gao for the help on Confocal Laser Scanning Microscopy.
Brassinosteroids (BRs) are perceived by transmembrane receptors and play vital roles in plant growth and development, as well as cell in responses to environmental stimuli. The transmemhrane receptor BRI1 can direct...
This work was supported by the National Natural Science Foundation of China (No. 90717001, 30721061, 30425029) and Science and Technology Commission of Shanghai Municipality (08XD14049).We thank Jian Xu (Utrecht University, Netherlands) for providing Arabidopsis seeds containing DR5-GUS and PIN2-EGFP expression cassettes. No conflict of interest declared,
Overexpression of membrane steroid binding protein 1 (MSBP1) stimulates the root gravitropism and antigravitropism of hypocotyl, which is mainly due to the enhanced auxin redistribution in the bending regions of hyp...