STEADY

作品数:493被引量:427H指数:8
导出分析报告
相关领域:理学更多>>
相关作者:贺桂梅王丽娟姚素霞张萍岑理相更多>>
相关机构:东南大学北京大学上海交通大学清华大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划中国博士后科学基金国家教育部博士点基金更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 主题=NAVIER-STOKES_EQUATIONSx
条 记 录,以下是1-10
视图:
排序:
On the steady Prandtl boundary layer expansions
《Science China Mathematics》2023年第9期1993-2020,共28页Chen Gao Liqun Zhang 
supported by National Natural Science Foundation of China (Grant Nos. 11471320 and 11631008)。
In this paper,we consider the zero-viscosity limit of the 2D steady Navier-Stokes equations in(0,L)×R+with no-slip boundary conditions.By estimating the stream-function of the remainder,we justify the validity of the...
关键词:Navier-Stokes equations Prandtl boundary layer zero-viscosity limit stream-function estimates of theremainder 
The Inviscid Limit for the Steady Incompressible Navier-Stokes Equations in the Three Dimension
《Chinese Annals of Mathematics,Series B》2023年第2期209-234,共26页Yan YAN Weiping YAN 
supported by the National Natural Science Foundation of China(Nos.11771359,12161006);the Guangxi Natural Science Foundation(No.2021JJG110002);the Special Foundation for Guangxi Ba Gui Scholars。
In this paper,the authors consider the zero-viscosity limit of the three dimensional incompressible steady Navier-Stokes equations in a half space R+×R^(2).The result shows that the solution of three dimensional inco...
关键词:Navier-Stokes equations Euler equations Zero viscosity limit 
On the stability of shear flows of Prandtl type for the steady Navier-Stokes equations
《Science China Mathematics》2023年第4期679-722,共44页Qi Chen Di Wu Zhifei Zhang 
supported by National Natural Science Foundation of China(Grant No.12101245);supported by National Natural Science Foundation of China(Grant No.12171010)。
In this paper, we study the stability of shear flows of Prandtl type as(U(y/√ν), 0) for the steady Navier-Stokes equations under a natural spectral assumption on the linearized NS operator. The key ingredient is to ...
关键词:Navier-Stokes equations shear flow Prandtl expansion 
Physics-Driven Learning of the Steady Navier-Stokes Equations using Deep Convolutional Neural Networks被引量:1
《Communications in Computational Physics》2022年第8期715-736,共22页Hao Ma Yuxuan Zhang Nils Thuerey Xiangyu Hu Oskar J.Haidn 
Hao Ma(No.201703170250)and Yuxuan Zhang(No.201804980021)are supported by China Scholarship Council when they conduct the work this paper represents.
Recently,physics-driven deep learning methods have shown particular promise for the prediction of physical fields,especially to reduce the dependency on large amounts of pre-computed training data.In this work,we targ...
关键词:Deep learning physics-drivenmethod convolutional neural networks Navier-Stokes equations 
Polygonal Finite Element for Two-Dimensional Lid-Driven Cavity Flow被引量:1
《Computers, Materials & Continua》2022年第3期4217-4239,共23页T.Vu-Huu C.Le-Thanh H.Nguyen-Xuan M.Abdel-Wahab 
This work was supported by the VLIR-UOS TEAM Project,VN2017TEA454A 103,‘An innovative solution to protect Vietnamese coastal riverbanks from floods and erosion’funded by the Flemish Government.
This paper investigates a polygonal finite element(PFE)to solve a two-dimensional(2D)incompressible steady fluid problem in a cavity square.It is a well-known standard benchmark(i.e.,lid-driven cavity flow)-to evaluat...
关键词:Lid-driven cavity INCOMPRESSIBLE STEADY Navier-Stokes equations polygonal finite element method 
Global Steady Prandtl Expansion over a Moving Boundary I
《Peking Mathematical Journal》2019年第2期155-238,共84页Sameer Iyer 
This research was completed under partial support by NSF Grant 1209437.
This is the first of three papers in which we prove that steady,incompressible Navier-Stokes flows posed over the moving boundary,y=0,can be decomposed into Euler and Prandtl flows in the inviscid limit globally in[1,...
关键词:Boundary layers Navier-Stokes equations Inviscid limit 
Remarks on Classical Solutions to Steady Quantum Navier-Stokes Equations
《Acta Mathematicae Applicatae Sinica》2016年第4期957-962,共6页Mohamed Ahmed Abdallah Xu-yang SUN Wei-wei WANG Jun-ping YIN 
Supported by the National Natural Science Foundation of China(Grant No.U1430103)
The paper of Dong [Dong, J. Classical solutions to one-dimensional stationary quantum Navier- Stokes equations, J. Math Pure Appl. 2011] which proved the existence of classical solutions to one-dimensional steady quan...
关键词:quantum Navier-Stokes equations steady solutions stationary solutions Leray-Schauder fixed-point theorem 
Two-Level Defect-CorrectionMethod for Steady Navier-Stokes Problem with Friction Boundary Conditions
《Advances in Applied Mathematics and Mechanics》2016年第6期932-952,共21页An Liu Yuan Li Rong An 
supported by Zhejiang Provincial Natural Science Foundation with Grant Nos.LY12A01015,LY14A010020 and LY16A010017.
In this paper,we present two-level defect-correction finite element method for steady Navier-Stokes equations at high Reynolds number with the friction boundary conditions,which results in a variational inequality pro...
关键词:Navier-Stokes equations friction boundary conditions variational inequality problems defect-correction method two-level mesh method 
Accuracy Analysis of the Boundary Integral Method for Steady Navier-Stokes Equations around a Rotating Obstacle
《Acta Mathematicae Applicatae Sinica》2016年第2期529-536,共8页Rong AN Kai-tai LI 
the National Natural Science Foundation of China(No.10901122,No.11001205);Zhejiang Provincial Natural Science Foundation of China(No.LY12A01015)
This paper deals with the boundary integral method to study the Navier-Stokes equations around a rotating obstacle. The detail of this method is that the exterior domain is truncated into a bounded domain and a new ex...
关键词:Navier-Stokes equations rotating obstacle exterior domain boundary integral method error analysis 
Nonlinear instability for nonhomogeneous incompressible viscous fluids被引量:3
《Science China Mathematics》2013年第4期665-686,共22页JIANG Fei JIANG Song NI GuoXi 
supported by National Natural Science Foundation of China (Grant Nos. 11101044,11271051,11229101 and 91130020);National Basic Research Program of China (Grant No.2011CB309705)
We investigate the nonlinear instability of a smooth steady density profile solution to the threedimensional nonhomogeneous incompressible Navier-Stokes equations in the presence of a uniform gravitational field,inclu...
关键词:nonhomogeneous Navier-Stokes equations steady density profile Rayieigh-Taylor instability incompressible viscous flows 
检索报告 对象比较 聚类工具 使用帮助 返回顶部