GENE_EXPRESSION_DATA

作品数:54被引量:68H指数:5
导出分析报告
相关作者:张子丁陆祖宏吕文文朱大铭刘金星更多>>
相关机构:东南大学中国农业大学香港浸会大学曲阜师范大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家高技术研究发展计划国家重点基础研究发展计划SA-SIBS优秀人才奖励基金更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
Prediction of Lung Cancer Stage Using Tumor Gene Expression Data
《Journal of Cancer Therapy》2024年第8期287-302,共16页Yadi Gu 
Lung cancer remains a significant global health challenge and identifying lung cancer at an early stage is essential for enhancing patient outcomes. The study focuses on developing and optimizing gene expression-based...
关键词:Lung Cancer Detection Stage Prediction Gene Expression Data Xgboost Machine Learning 
MSIsensor-RNA:Microsatellite Instability Detection for Bulk and Single-cell Gene Expression Data
《Genomics, Proteomics & Bioinformatics》2024年第3期85-90,共6页Peng Jia Xuanhao Yang Xiaofei Yang Tingjie Wang Yu Xu Kai Ye 
supported by the National Natural Science Foundation of China(Grant Nos.32070663,32125009,and 62172325);the National Key R&D Program of China(Grant No.2022YFC3400300);the Fundamental Research Funds for the Central Universities,China(Grant No.xzy012020012);the Natural Science Basic Research Program of Shaanxi,China(Grant No.2021GXLH-Z-098)to Kai Ye and Xaiofei Yang.
Microsatellite instability(MSI)is an indispensable biomarker in cancer immunotherapy.Currently,MSI scoring methods by high-throughput omics methods have gained popularity and demonstrated better performance than the g...
关键词:Microsatellite instability Gene expression Single-cell RNA-seq RNA-SEQ MICROARRAY 
A hierarchical clustering approach for colorectal cancer molecular subtypes identification from gene expression data
《Intelligent Medicine》2024年第1期43-51,共9页Shivangi Raghav Aastha Suri Deepika Kumar Aakansha Aakansha Muskan Rathore Sudipta Roy 
Background Colorectal cancer(CRC)is the second leading cause of cancer fatalities and the third most common human disease.Identifying molecular subgroups of CRC and treating patients accordingly could result in better...
关键词:Machine learning Colorectal cancer Feature selection CLASSIFICATION CLUSTERING 
A Survey on Acute Leukemia Expression Data Classification Using Ensembles
《Computer Systems Science & Engineering》2023年第11期1349-1364,共16页Abdel Nasser H.Zaied Ehab Rushdy Mona Gamal 
Acute leukemia is an aggressive disease that has high mortality rates worldwide.The error rate can be as high as 40%when classifying acute leukemia into its subtypes.So,there is an urgent need to support hematologists...
关键词:LEUKEMIA CLASSIFICATION ENSEMBLE rotation forest pairwise correlation bayesian networks gene expression data MICROARRAY gene selection 
Continuous and Discrete Similarity Coefficient for Identifying Essential Proteins Using Gene Expression Data被引量:1
《Big Data Mining and Analytics》2023年第2期185-200,共16页Jiancheng Zhong Zuohang Qu Ying Zhong Chao Tang Yi Pan 
supported by the Shenzhen KQTD Project(No.KQTD20200820113106007);China Scholarship Council(No.201906725017);the Collaborative Education Project of Industry-University cooperation of the Chinese Ministry of Education(No.201902098015);the Teaching Reform Project of Hunan Normal University(No.82);the National Undergraduate Training Program for Innovation(No.202110542004).
Essential proteins play a vital role in biological processes,and the combination of gene expression profiles with Protein-Protein Interaction(PPI)networks can improve the identification of essential proteins.However,g...
关键词:Protein-Protein Interaction(PPI)network continuous and discrete similarity coefficient essential proteins 
Hybrid Feature Selection Method for Predicting Alzheimer’s Disease Using Gene Expression Data
《Computers, Materials & Continua》2023年第3期5559-5572,共14页Aliaa El-Gawady BenBella S.Tawfik Mohamed A.Makhlouf 
Gene expression(GE)classification is a research trend as it has been used to diagnose and prognosis many diseases.Employing machine learning(ML)in the prediction of many diseases based on GE data has been a flourishin...
关键词:Gene expression gene selection machine learning CLASSIFICATION Alzheimer’s disease 
Regulatory Genes Through Robust-SNR for Binary Classification Within Functional Genomics Experiments
《Computers, Materials & Continua》2023年第2期3663-3677,共15页Muhammad Hamraz Dost Muhammad Khan Naz Gul Amjad Ali Zardad Khan Shafiq Ahmad Mejdal Alqahtani Akber Abid Gardezi Muhammad Shafiq 
King Saud University for funding this work through Researchers Supporting Project Number(RSP2022R426),King Saud University,Riyadh,Saudi Arabia.
The current study proposes a novel technique for feature selection by inculcating robustness in the conventional Signal to noise Ratio(SNR).The proposed method utilizes the robust measures of location i.e.,the“Median...
关键词:Median absolute deviation(MAD) classification feature selection high dimensional gene expression datasets signal to noise ratio 
A Novel Soft Clustering Approach for Gene Expression Data
《Computer Systems Science & Engineering》2022年第12期871-886,共16页E.Kavitha R.Tamilarasan Arunadevi Baladhandapani M.K.Jayanthi Kannan 
Gene expression data represents a condition matrix where each rowrepresents the gene and the column shows the condition. Micro array used todetect gene expression in lab for thousands of gene at a time. Genes encode p...
关键词:REINFORCEMENT MEMBERSHIP CENTROID threshold STATISTICS BIOINFORMATICS gene expression data 
Clustering Gene Expression Data Through Modified Agglomerative M-CURE Hierarchical Algorithm
《Computer Systems Science & Engineering》2022年第6期1027-1041,共15页E.Kavitha R.Tamilarasan N.Poonguzhali M.K.Jayanthi Kannan 
Gene expression refers to the process in which the gene information isused in the functional gene product synthesis. They basically encode the proteinswhich in turn dictate the functionality of the cell. The first ste...
关键词:CLUSTERING gene identifiers representatives dimension reduction 
High-dimensional proportionality test of two covariance matrices and its application to gene expression data被引量:1
《Statistical Theory and Related Fields》2022年第2期161-174,共14页Long Feng Xiaoxu Zhang Binghui Liu 
This work was supported by the National Natural Sci-ence Foundation of China[Grant Numbers 11501092,11571068];the Special Fund for Key Laboratories of Jilin Province,China[Grant Number 20190201285JC].
With the development of modern science and technology, more and more high-dimensionaldata appear in the application fields. Since the high dimension can potentially increase the com-plexity of the covariance structure...
关键词:Covariance matrices elliptically symmetric distributions high dimension test PROPORTIONALITY spatial rank 
检索报告 对象比较 聚类工具 使用帮助 返回顶部