三角形的“心距”计算公式  被引量:2

在线阅读下载全文

作  者:冯跃峰[1] 

机构地区:[1]湖南师大附中,410000

出  处:《中学数学教学》1995年第1期18-19,共2页

摘  要:1765年,瑞士数学家欧拉(Euler)发现了如下定理:定理1(欧拉定理) 设△ABC的外接回、内切圆的半径分别为R、r,其外心到内心的距离为d,则d^2=R^2-2Rr这个优美对称的结果,激发我们去寻求三角形中其它特殊点如重心、垂心、内心、外心之间的距离的计算公式.对此,我们有如下的定理2(心距定理) 设△ABC的三边为a、b、c,外接圆、内切圆半径分别为R、r,其外心、内心、垂心到重心的距离分别为e、f、g,外心到垂心的距离为k。

关 键 词:三角形的重心 计算公式 欧拉定理 垂心 外心 优美对 特殊点 定理2 定理1 欧拉不等式 

分 类 号:G633.6[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象