检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中山大学数学系,广州510275 [2]中山大学科学计算与计算机应用系,广州510275
出 处:《应用数学学报》2005年第1期158-166,共9页Acta Mathematicae Applicatae Sinica
基 金:教育部留学回国人员科研启动基金广东省自然科学基金博士科研启动项目(04300594)资助.
摘 要:对于二维和三维的Lotka-Volterra竞争系统,已有文献证明:当每一个坐标轴上的平衡点均为渐近稳定时,该系统几乎所有解趋于坐标轴上平衡点所组成的点集,即,不趋于坐标轴上平衡点的解集,其测度为零.由此, van den Driessche和Zeeman于1998年提出猜测:对n(n>3)维Lotka-Volterra竞争系统,当每一个坐标轴上的平衡点均为渐近稳定时,该系统几乎所有解趋于坐标轴上平衡点所组成的点集,即,不趋于坐标轴上平衡点的解集,其在n维空间的测度为零.本文证明当n维Lotka-Volterra竞争系统可被逐维投影到一维系统时,该猜测成立,并给出了可投影条件的代数判据.本文所得结论包含了已有文献的结果.For two species and three species competitive Lotka-Volterra systems, it is known that as axial fixed points are asymptotically stable, almost all the orbits tend to the axial fixed points. That is, the measure of solutions that do not tend to the axial fixed points, is equal to aero. Motivated from this result, van den Driessche and Zeeman raised a conjecture in 1998: for n(n > 3) species competitive Lotka-Volterra systems, almost all the orbits tend to axial fixed points as the axial fixed points are asymptotically stable. That is, in n dimensional space, the measure of solutions that do not converge to the axial fixed points, is equal to aero. In this paper, we prove the conjecture under the condition that the of n dimensional competitive Lotka-Volterra systems can be projected to one dimensional Lotka-Volterra systems. We give the algebraic criteria under which the systems can be projected and our result includes those in previous works.
关 键 词:LOTKA-VOLTERRA竞争系统 平衡点 点集 渐近性 坐标轴 N维空间 代数判据 渐近稳定 投影 定时
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249