n维可投影Lotka-Volterra竞争系统的渐近性  被引量:1

ASYMPTOTIC BEHAVIOR OF n DIMENSIONAL COMPETITIVE LOTKA-VOLTERRA SYSTEMS WHICH CAN BE RADIALLY PROJECTED

在线阅读下载全文

作  者:王远世[1] 吴红[2] 

机构地区:[1]中山大学数学系,广州510275 [2]中山大学科学计算与计算机应用系,广州510275

出  处:《应用数学学报》2005年第1期158-166,共9页Acta Mathematicae Applicatae Sinica

基  金:教育部留学回国人员科研启动基金广东省自然科学基金博士科研启动项目(04300594)资助.

摘  要:对于二维和三维的Lotka-Volterra竞争系统,已有文献证明:当每一个坐标轴上的平衡点均为渐近稳定时,该系统几乎所有解趋于坐标轴上平衡点所组成的点集,即,不趋于坐标轴上平衡点的解集,其测度为零.由此, van den Driessche和Zeeman于1998年提出猜测:对n(n>3)维Lotka-Volterra竞争系统,当每一个坐标轴上的平衡点均为渐近稳定时,该系统几乎所有解趋于坐标轴上平衡点所组成的点集,即,不趋于坐标轴上平衡点的解集,其在n维空间的测度为零.本文证明当n维Lotka-Volterra竞争系统可被逐维投影到一维系统时,该猜测成立,并给出了可投影条件的代数判据.本文所得结论包含了已有文献的结果.For two species and three species competitive Lotka-Volterra systems, it is known that as axial fixed points are asymptotically stable, almost all the orbits tend to the axial fixed points. That is, the measure of solutions that do not tend to the axial fixed points, is equal to aero. Motivated from this result, van den Driessche and Zeeman raised a conjecture in 1998: for n(n > 3) species competitive Lotka-Volterra systems, almost all the orbits tend to axial fixed points as the axial fixed points are asymptotically stable. That is, in n dimensional space, the measure of solutions that do not converge to the axial fixed points, is equal to aero. In this paper, we prove the conjecture under the condition that the of n dimensional competitive Lotka-Volterra systems can be projected to one dimensional Lotka-Volterra systems. We give the algebraic criteria under which the systems can be projected and our result includes those in previous works.

关 键 词:LOTKA-VOLTERRA竞争系统 平衡点 点集 渐近性 坐标轴 N维空间 代数判据 渐近稳定 投影 定时 

分 类 号:O175.14[理学—数学] TP183[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象