广义经典力学系统的对称性与Mei守恒量  被引量:13

Symmetries and Mei conserved quantities for systems of generalized classical mechanics

在线阅读下载全文

作  者:张毅[1] 

机构地区:[1]苏州科技学院土木工程系,苏州215011

出  处:《物理学报》2005年第7期2980-2984,共5页Acta Physica Sinica

基  金:江苏省高校自然科学基金(批准号:04KJA130135);江苏省青蓝工程基金资助的课题.~~

摘  要:研究广义经典力学系统的对称性和一类新型守恒量———Mei守恒量.在高维增广相空间中建立了系统的运动微分方程;给出了系统的Mei对称性、Noether对称性和Lie对称性的判据;得到了分别由三种对称性导致Mei守恒量的条件和Mei守恒量的形式.举例说明结果的应用.In this paper, the symmetries and a new type of conserved quantities called Mei conserved quantities for systems of generalized classical mechanics are studied. In the high-dimensional extended phase space, the differential equations of motion of the systems are established, and the criteria for Mei symmetries, Noether symmetries and Le symmetries of the systems are given. The conditions, under which the above three symmetries can respectively lead to the Mei conserved quantities, and the form of the Mei conserved quantities are obtained. Finally, an example is given to illustrate the application of the results.

关 键 词:广义经典力学系统 守恒量 NOETHER对称性 高维增广相空间 运动微分方程 MEI对称性 LIE对称性 判据 

分 类 号:O316[理学—一般力学与力学基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象