检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京大学数学系
出 处:《数学进展》1995年第3期215-236,共22页Advances in Mathematics(China)
摘 要:本文系统讨论Wess-Zumino-Witten模型,给出了WZW模型的辛理论,得到WZW模型与Chern-Simons模型的关系.并且还给出了WZW模型几何量子化理论以及圈群的投影表示.本文还研究了三种不同情况下规范场的动量矩映射,通过Marsden-Weinstein约化,得到Gauss约束;还得到kohno联络,证明了这个联络是平坦的,它的holonomy表示则给出了辫群的表示.本文内容散见於近代物理文献,从物理观点看不是新的,但是本文对WZW模型的讨论和简述在数学上是严格的。A systematic description of the Wess-Zumino-Witten model is presented. The sym-plectic method plays the major role in this paper and also gives the relationship between the WZW model and the Chern-Simons model,The quantum theory is obtained to give the prpjective represen-tation of the Loop group.The Gauss constraints for the connection whose curvature is only focused on several fixed points are solved.The Kohno connection and the Knizhnik-Zamolodchikov equation are derived.The holonomy representation and R-matrix representation of braid group are discussed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249