一类多空间变量双曲型守恒律高阶MmB格式的收敛性  

CONVERGENCE OF A CLASS OF HIGH ORDER ACCURATE MmB SCHEMES FOR CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS

在线阅读下载全文

作  者:戴嘉尊[1] 成娟[1] 

机构地区:[1]南京航空航天大学

出  处:《计算数学》1996年第2期141-148,共8页Mathematica Numerica Sinica

摘  要:一类多空间变量双曲型守恒律高阶MmB格式的收敛性戴嘉尊,成娟(南京航空航天大学)CONVERGENCEOFACLASSOFHIGHORDERACCURATEMmBSCHEMESFORCONSERVATIONLAWSINSEVERALSPACEDIME...Abstract In this paper, concerning with the Cauchy problem for nonlinear hyperbolic conservation laws in several space dimensions, we construct a class of high order accurate MmB schemes from three point E-schemes by the flux boiers. By applying the method of entropy measure-valued solutions, the family of approximate solutions defined by the scheme are proven to converge to the unique entropy weak L∞-solution. Furthermore, some numerical experiments on the Riemann problem for the 2D Burgers equation are given and the relatively satisfied result is obtained.

关 键 词:双曲型守恒律 MmB格式 收敛性 初值问题 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象