检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡国权[1]
出 处:《科学通报》1996年第9期769-771,共3页Chinese Science Bulletin
基 金:国家自然科学基金
摘 要:Molnar在文献[1]中用Hopf代数范畴中的可裂及余可裂短正合裂刻画了半直积Hopf代数及其对偶.Radford及Majid分别将其推广成双积(biproduct)及双交叉积(bicrossproduct),前者成为Majid的bosonization定理的一个漂亮例子,后者给出了Drinfel’d的量子偶(Double)的通用构作用.本文从新的角度推广Molnar的构作,研究张量积余代数与交叉积代数结构一起成为双代数以及Hopf代数的条件.设K为域,所论代数、余代数均指域K上的,采用文献[6]中的Sigma记号,但上、下标中省去括号,(?)简记为(?).定义 设H为双代数,B为K上向量空间,若存在双线性映射σ:H(?)H→B和线性映射·:H(?)B→B,满足1)I_H·b=b,2)∑(h_1·(l_1·b))σ(h_2,l_2)=∑σ(h_1,l_1)(h_2l_2·b),(?)b∈B,h,l∈H,则称B为左H(?)扭曲模.若代数B是左H(?)扭曲模且满足3)h·ab=∑(h_1·a)(h_2·b),4)h·1_B=ε_H(h)1_B,(?)h∈H,a,b∈B,则称B为左H(?)扭曲模代数.若余代数B是左H(?)扭曲模且满足3′)△_B(h·b)=∑h_1·b_1(?)h_2·b_2,4′)ε_B(h·b)=ε_H(h)ε_B(b),(?)h∈H,b∈B,则称B为左H(?)扭曲模余代数.若双代数B同时是左H(?)扭曲模代数和左H(?)扭曲模余代数,则称B为左H(?)扭曲模双代数.设H为双代数,B同时是代数和余代数,但不一定是双代数.若B是左H(?)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229