检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国工程物理研究院研究生部,北京2101信箱100088 [2]北京应用物理与计算数学研究所计算物理实验室,北京8009信箱100088
出 处:《数值计算与计算机应用》2005年第4期249-261,共13页Journal on Numerical Methods and Computer Applications
基 金:国家自然科学基金(No.60373015)资助项目.
摘 要:我们提出了两个具有改进稳定性限制条件的新显格式.与经典显格式相比,稳定性限制条 件分别对两维抛物问题放宽了4倍,对一维问题放宽了2倍,同时它的精度与经典全隐格式 的相同.然后,我们通过在内边界点使用大步长的这种新显格式,在内点使用全隐格式,设计 了一个有限差分区域分解算法,稳定性限制条件分别对一维抛物问题放宽了2m2倍,对二维 问题放宽了4m2倍.从而我们能使用一个大的时间步长,这使我们在并行求解抛物问题时能 节省大量的计算量.In this paper we present two new explicit schemes which have improved stability condition. The stability bound is increased by 4 times for the two dimensional parabolic problem and 2 times for the one dimensional parabolic problem compared with the classical single-point explicit scheme respectively. At the same time the accuracy of this new scheme is the same as that of the full implicit scheme. Then we design a finite difference domain decomposition procedure by using this new scheme with a larger spacing at interface points and the fully implicit scheme at interior points, the stability bound is released by 2m^2 for the one dimensional parabolic problem and 4m^2 for the two dimensional parabolic problem respectively. Hence we can use a larger time step, which can save a lot of computational works for the parallel solution of the parabolic problem.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112