检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]燕山大学电气工程学院,河北秦皇岛066004
出 处:《电机与控制学报》2006年第2期151-153,159,共4页Electric Machines and Control
基 金:河北省自然科学基金资助项目(F2004000260)
摘 要:针对机器人在参数变化和外界工作环境的刚度变化时,系统的控制质量会因常规PID控制器没有自适应能力而明显变差,甚至无法工作,提出了一种具有混合H2/H∞性能指标的CMAC控制方法,采用CMAC神经网络加强系统对参数不确定性的补偿,引入混合优化策略来优化CMAC神经网络的结构和权值,保证了系统对外界干扰在给定干扰衰减度下具有鲁棒稳定性的同时,还能使系统达到良好的动态性能,满足一定的H2最优性能指标。仿真结果表明,本文所提控制方案在大量参数不确定性及外部扰动存在的情况下,仍能满足性能要求。The design of a neural networks control with mixed H2/H∞ performance was manipulators force/position control. The mixed H2/H∞ tracking performance ensures the robust stability under a prescribed attenuation level for external disturbance, and the H2optimal tracking can be also achieved. Neural networks were introduced to improve the system's performance under parameters uncertainties. Mixed optimal strategy was introduced to optimize neural networks' structure and weight. The simulation shows that it is an effective method. And the control method can get better performance even when system is under large modeling uncertainties and external disturbances.
关 键 词:机器人 力/位置控制 混合H2/H∞ 混合优化策略 CMAC
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249