检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学理学院
出 处:《工程数学学报》2006年第5期849-855,共7页Chinese Journal of Engineering Mathematics
基 金:国家自然科学基金(10271055)
摘 要:本文研究矩阵方程AX-BY=Z的最小二乘中心对称解,给出了AX-BY=Z的最小二乘中心对称解的表达式,导出了AX-BY=Z有中心对称解的条件。讨论了在AX-BY=Z的最小二乘中心对称解集合中求与给定矩阵最佳逼近的解,并将所得结果应用于研究一类中心对称矩阵的广义特征值反问题。The least-squares solutions of the matrix equation AX - BY = Z with respect to centrosymmetric matrices A and B is considered. The general expression of the solution is given and some necessary and sufficient conditions are derived for the solvability of the matrix equation AX - BY = Z. The optimal approximation to given matrices from the least-squares solution set of AX - BY = Z is provided. These results are applied to solve an class of inverse generalized eigenvalue problem for centrosymmetric matrices.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200