含极大子群为单群的单群  被引量:3

The Simple Group Which Possess Some Simple Groups as the Maximal Subgroup

在线阅读下载全文

作  者:王兆浩[1] 张军阳[2] 

机构地区:[1]周口职业技术学院信息科学系,河南周口466001 [2]漳州师范学院数学与信息科学系,福建漳州363000

出  处:《西南大学学报(自然科学版)》2007年第10期8-13,共6页Journal of Southwest University(Natural Science Edition)

摘  要:从极大子群的角度探讨了原群的单性,得到:(ⅰ)设群G的任一极大子群都是单群,若G中存在一个非正规极大子群满足性质(φ),那么G是单群.设群G的极大子群都非正规,且极大子群要么为单群要么为幂零群,则:(ⅱ)如果两者都存在,且其中有一个幂零极大子群为有限群,那么G为单群.(ⅲ)如果其中有一个幂零极大子群为有限生成群,有一个单极大子群为周期群,那么G为单群.(ⅳ)如果其中有一个幂零极大子群M和一个单极大子群R使得R∩MperM,那么G为单群.In this paper, we investigate relationship between the simplicity of groups and their maximal subgroups and get the following results: (i) Let every maximal subgroup of group G be simple. If there is a nonnormal maximal subgroup of G which possesses property (φ), then G is simple. tent: Let every maximal subgroup of group G be nonnormal and every maximal subgroup be simple or nilpotent: (ii) if both (iii) if there group which is of them are existent, are a nilpotent ma torsion, then G is s xi and one of the maximal subgroups mal subgroup which is finitely gen imple. of era G is finite, then G is simple. ted and a simple maximal sub-group which is torsion, then G is simple. (iv) if there are a nilpotent maximal subgroup M and a simple maximal group R which satisfy R ∩ M per M, then G is simple.

关 键 词:单群 极大子群 正规子群 循环子群 幂零子群 

分 类 号:O152.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象