检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]周口职业技术学院信息科学系,河南周口466001 [2]漳州师范学院数学与信息科学系,福建漳州363000
出 处:《西南大学学报(自然科学版)》2007年第10期8-13,共6页Journal of Southwest University(Natural Science Edition)
摘 要:从极大子群的角度探讨了原群的单性,得到:(ⅰ)设群G的任一极大子群都是单群,若G中存在一个非正规极大子群满足性质(φ),那么G是单群.设群G的极大子群都非正规,且极大子群要么为单群要么为幂零群,则:(ⅱ)如果两者都存在,且其中有一个幂零极大子群为有限群,那么G为单群.(ⅲ)如果其中有一个幂零极大子群为有限生成群,有一个单极大子群为周期群,那么G为单群.(ⅳ)如果其中有一个幂零极大子群M和一个单极大子群R使得R∩MperM,那么G为单群.In this paper, we investigate relationship between the simplicity of groups and their maximal subgroups and get the following results: (i) Let every maximal subgroup of group G be simple. If there is a nonnormal maximal subgroup of G which possesses property (φ), then G is simple. tent: Let every maximal subgroup of group G be nonnormal and every maximal subgroup be simple or nilpotent: (ii) if both (iii) if there group which is of them are existent, are a nilpotent ma torsion, then G is s xi and one of the maximal subgroups mal subgroup which is finitely gen imple. of era G is finite, then G is simple. ted and a simple maximal sub-group which is torsion, then G is simple. (iv) if there are a nilpotent maximal subgroup M and a simple maximal group R which satisfy R ∩ M per M, then G is simple.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.14.145.78