检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津大学理学院 [2]唐山学院数学系,唐山063020
出 处:《黑龙江大学自然科学学报》2007年第5期689-691,共3页Journal of Natural Science of Heilongjiang University
基 金:南开大学天津大学刘徽应用数学中心资金资助项目
摘 要:利用上下解构造迭代序列获得边值问题(φ(x(2m-2)(t)))″=f(t,x,x″(t),x(4)(t),…x(2m-2)(t)),t∈[0,1]x(2j)(0)=0,x(2j)(1)=0,j=0,1,…m-1极值解的存在性。主要通过定义上下解构造凸闭集,通过方程定义算子,然后利用上下解构造两个迭代序列,利用算子在所构造的凸闭集中的性质,证明两个序列为单调序列,且他们是一致有界等度连续的,由Arzela定理得到算子的不动点,极值解的存在性得以证明。The existence of extremal solutions of the boundary value problems (φ(x^(2m-2)(t)))″=f(t,x,x″(t),x^(4)(t),…x^(2m-2)(t)),t∈[0,1]x^(2j)(0)=0,x^(2j)(1)=0,j=0,1,…m-1 is obtained by constructing iterative sequence via upper and lower solutions. Mainly Convex closed set is constructed by defining upper and lower solutions. Operator is defined through the equation, then two iterative sequences is constructed via upper and lower solutions. By the property of the operator in the constructed convex closed set, the two sequences is proved that they are monotone and uniformly bounded and equicontinuous. From Arzela theorem a fixed point of the operator is obtained. Thus the existence of extremal solutions is proved.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222