高阶P-Laplace方程边值问题的上下解方法  

The method of upper and lower solutions for higher order P-Laplace equation boundary value problems

在线阅读下载全文

作  者:孟宪瑞[1] 史国良[1] 王淑君[2] 

机构地区:[1]天津大学理学院 [2]唐山学院数学系,唐山063020

出  处:《黑龙江大学自然科学学报》2007年第5期689-691,共3页Journal of Natural Science of Heilongjiang University

基  金:南开大学天津大学刘徽应用数学中心资金资助项目

摘  要:利用上下解构造迭代序列获得边值问题(φ(x(2m-2)(t)))″=f(t,x,x″(t),x(4)(t),…x(2m-2)(t)),t∈[0,1]x(2j)(0)=0,x(2j)(1)=0,j=0,1,…m-1极值解的存在性。主要通过定义上下解构造凸闭集,通过方程定义算子,然后利用上下解构造两个迭代序列,利用算子在所构造的凸闭集中的性质,证明两个序列为单调序列,且他们是一致有界等度连续的,由Arzela定理得到算子的不动点,极值解的存在性得以证明。The existence of extremal solutions of the boundary value problems (φ(x^(2m-2)(t)))″=f(t,x,x″(t),x^(4)(t),…x^(2m-2)(t)),t∈[0,1]x^(2j)(0)=0,x^(2j)(1)=0,j=0,1,…m-1 is obtained by constructing iterative sequence via upper and lower solutions. Mainly Convex closed set is constructed by defining upper and lower solutions. Operator is defined through the equation, then two iterative sequences is constructed via upper and lower solutions. By the property of the operator in the constructed convex closed set, the two sequences is proved that they are monotone and uniformly bounded and equicontinuous. From Arzela theorem a fixed point of the operator is obtained. Thus the existence of extremal solutions is proved.

关 键 词:上下解 极值解 算子 

分 类 号:O175.8[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象