检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学计算机科学与技术学院 [2]海军驻北京8359所军事代表室,北京10039
出 处:《哈尔滨工业大学学报》2008年第3期401-406,共6页Journal of Harbin Institute of Technology
基 金:国家高技术研究发展计划资助项目(2002AA735041);哈尔滨市科学研究基金资助项目(2005AFQXJO52)
摘 要:为了实现移动机器人仅依靠单目视觉和里程计创建可靠地图,本文提出了基于Rao-Blackwellized粒子滤波器的同时定位和地图创建方法.文中建立了鲁棒的运动模型和感知模型;通过有效的尺度不变特征变换方法提取环境特征,并采用基于KD-Tree的高维特征点最近邻快速搜索算法实现特征匹配;通过对匹配对的三维重建创建了密集的空间三维自然路标.实际实验表明本文方法能创建较高精度的地图.For building the robust map of mobile robot only with monocular vision and odometer, simultaneous localization and mapping (SLAM) is implemented efficiently with the Rao-Blackwellized particle filters (RBPF). The robust motion model and observation model was constructed. Scale Invariant Feature Transform (SIFT) was used to extract image features served as the nature landmarks, and a fast nearest neighbor search algorithm for matching multi-dimensional features in a KD-Tree was presented to implement feature matching. The map representation was executed with dense 3D natural landmarks reconstructed with the matching pairs. Experiments on the real robot show that the proposed method is of high precision.
关 键 词:移动机器人 同时定位和地图创建 RAO-BLACKWELLIZED粒子滤波器 尺度不变特征变换 KD-TREE 最近邻搜索
分 类 号:TP24[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222