检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国海洋大学信息科学与工程学院 [2]山东科技大学信息与电气工程学院,山东青岛266510 [3]清华大学智能技术与系统国家重点实验室,北京100084
出 处:《计算机技术与发展》2008年第6期151-155,共5页Computer Technology and Development
摘 要:粒子群算法是一种仿生进化算法,源于对鸟群觅食行为的模拟,由于其计算简单、快速,被广泛应用。但是,基本粒子群算法在求解的过程中存在着全局搜索能力和局部求精能力两个性能指标之间的矛盾,算法容易陷入局部极值,进化后期的收敛速度慢。针对上述问题,提出了基于混沌变异算子的粒子群算法,可以使粒子摆脱局部极值,继续优化,加快收敛速度。将基于混沌变异的粒子群算法与模糊算法相结合,用于控制倒立摆系统的平衡。仿真实验表明,混沌变异粒子群算法优化了倒立摆系统模糊控制器的设计,改善了控制效果。Particle swarm optimization (PSO) is a kind of bionic evolutional algorithm and it is inspired by the swarms of birds in nature. Original PSO has contradictions between two performance indicators: global search capabilities and local refining capacity. Moreover, it usually converges to a local optimum with slow converging speed in the late stage of evolutionary. A PSO with chaotic mutation is proposed to accelerate the particles to jump out the local extremum. Combining it with fuzzy logic algorithm is applied to control an inverted pendulum. Simulation demonstrates the effectiveness of the PSO with chaotic mutation, which optimizes fuzzy control and improves the performance of control.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145