检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]潍坊学院数学系,山东潍坊261061 [2]山东师范大学数学系,山东济南250014 [3]曲阜师范大学运筹所,山东曲阜273165
出 处:《运筹学学报》2008年第2期1-16,共16页Operations Research Transactions
基 金:National Natural Science Foundation under Grant No.10571106.
摘 要:本文提出了两种搜索方向带有扰动项的Fletcher-Reeves(abbr.FR)共轭梯度法.其迭代公式为x_k+1=x_k+α_k(s_k+ω_k),其中s_k由共轭梯度迭代公式确定,ω_k为扰动项,α_k采用线搜索确定而不是必须趋于零.我们在很一般的假设条件下证明了两种算法的全局收敛性,而不需要目标函数有下界或水平集有界等有界性条件.In this paper, we propose two kinds of Fletcher-Reeves (abbr.FR) conjugate gradient methods with linesearch in the case that the search direction is perturbed slightly. Their iterate formula is xk+1 = xk + αk(sk + ωk), where the main direction sk is obtained by FR conjugate gradient method and ωk is perturbation term. The stepsize αk is determined by linesearch and needs not tend to zero. We prove that the two kinds of methods are globally convergent under mild conditions, and in doing so, we remove various boundedness conditions such as boundedness from blow of f, boundedness of level set, etc.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13