检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学应用数学系,陕西西安710072
出 处:《中北大学学报(自然科学版)》2008年第4期301-307,共7页Journal of North University of China(Natural Science Edition)
基 金:陕西省自然科学基金资助项目(2004CS110002)
摘 要:基于共轭梯度法,建立了一类Lyapunov矩阵方程的对称最小二乘解的迭代算法.使用该算法不仅可以判断这类矩阵方程的对称解的存在性,而且无论对称解是否存在,都能够在有限步迭代计算之后得到对称最小二乘解.选取特殊的初始矩阵时,可求得极小范数对称最小二乘解,同时也能给出指定矩阵的最佳逼近对称矩阵.最后,利用数值算例对有关结果进行了验证.On the basis of conjugate gradient method, an iterative method was presented to solve the least squares symmetric solution of Lyapunov matrix equation. By the iterative method, the solvability of the equation over symmetric solution can be determined, Whether the matrix equation is consistent or not, the least squares symmetric solution can be obtained automatically within finite iteration steps. And the symmetric solution with least norm can be obtained by choosing a special initial symmetric matrix. In addition, its optimal approximation matrix to a given matrix can be obtained. The given numerical examples show that the iterative method is quite efficient.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145