检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北大学信息科学与工程学院,辽宁沈阳110004
出 处:《化工学报》2008年第10期2553-2560,共8页CIESC Journal
基 金:国家自然科学基金项目(60774068);国家重点基础研究发展计划项目(2002CB312201)~~
摘 要:结合诺西肽发酵过程的实际情况,提出了基于加权RBF神经网络(weighted RBF neural network,WRBFNN)的菌体浓度软测量建模方法。在诺西肽发酵过程非结构模型的基础上,根据隐函数存在定理确定出辅助变量,从而使其选择有严格的理论依据。针对菌体浓度变化范围大这一特点,将传统RBF神经网络(RBFneural network,RBFNN)的误差函数进行了改进;然后根据每批训练样本对被预测对象的预估能力,自适应地为各个批次的训练样本分配权重,进而实施WRBFNN建模。实验结果验证了所提方法的有效性。Combined basis function neural on the unstructure according to the d with the practical situation of Nosiheptide fermentation process, a weighted radial network (WRBFNN) based biomass soft sensor modeling method is presented. Based model of Nosiheptide fermentation process, the secondary variables were selected mplicit function existence theorem, which made the selection theoretically strict. According to the characteristics that biomass could vary in a wide range, the error function of the traditional RBFNN was improved. Each batch sample was self-adaptively weighted according to their predicting ability to the predicted object, and then WRBFNN was used to develop the biomass soft sensor model. The testing results showed the effectiveness of the presented approach.
关 键 词:软测量 辅助变量选择 加权 RBF神经网络 菌体浓度 发酵
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229