检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学船舶海洋与建筑工程学院,上海200030 [2]大连海事大学航海学院,大连116026
出 处:《自动化学报》2008年第11期1424-1430,共7页Acta Automatica Sinica
基 金:国家自然科学基金 (50779033, 60874056);国家高技术研究发展计划 (863 计划) (2007AA11Z250);中国博士后科学基金 (20070420101);上海市博士后科研资助计划 (07R214128) 资助~~
摘 要:针对一类具有不确定系统函数和方向未知的不确定增益函数的非线性系统,提出了一种鲁棒自适应神经网络控制算法.本算法采用RBF神经网络(Radial based function neural network,RBFNN)逼近模型不确定性,外界干扰和建模误差采用非线性阻尼项进行补偿,将动态面控制(Dynamic surface control,DSC)与后推方法结合,消除了反推法的计算膨胀问题,降低了控制器的复杂性;尤其是采用Nussbaum函数处理系统中方向未知的不确定虚拟控制增益函数,不仅可以避免可能存在的控制器奇异值问题,而且还能使得整个系统的在线学习参数显著减少,与DSC方法优点结合,使得控制算法的计算量大为减少,便于计算机实现.稳定性分析证明了所得闭环系统是半全局一致最终有界(Semi-global uniformly ultimately bounded,SGUUB)的,并且跟踪误差可以收敛到原点的一个较小邻域.最后,计算机仿真结果表明了本文所提出控制器的有效性.A systematic procedure for synthesis of robust adaptive neural network control is proposed for a class of strictfeedback nonlinear systems with both unknown system nonlinearities and unknown virtual control gain nonlinearities. By employing radial based function neural network (RBF NN) to approximate uncertain nonlinear system functions, and nonlinear damping item to compensate for both external disturbance and modeling error, and by combining dynamic surface control (DSC) with backstepping technique and Nussbaum gain approach, the algorithm can not only overcome both the "explosion of complexity" problem inherent in the backstepping method and the possible "controller singularity" problem, but also reduce dramatically the number of on-line learning parameters, thus reducing the computation load of the algorithm correspondingly and making it easy in actual implementation. The stability analysis shows that all closed-loop signals are semi-global uniformly ultimately bounded (SGUUB), with the tracking error converging to a small neighborhood of the origin by appropriately choosing design constants. Finally, simulation results are presented to show the effectiveness of the proposed algorithm.
关 键 词:不确定非线性系统 神经网络 动态面控制 自适应控制 NUSSBAUM增益
分 类 号:TP273.2[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.131.93.117