矩阵方程A^TXB+B^TX^TA=D的极小范数最小二乘解的迭代解法  被引量:15

AN ITERATIVE METHOD FOR THE MINIMUM NORM-LEAST SQUARE SOLUTION OF THE MATRIX EQUATION A^TXB+B^TX^TA=D

在线阅读下载全文

作  者:盛兴平[1,2] 苏友峰[2] 陈果良[2] 

机构地区:[1]阜阳师范学院数学与计算科学学院,阜阳236032 [2]华东师范大学数学系,上海200062

出  处:《高等学校计算数学学报》2008年第4期352-362,共11页Numerical Mathematics A Journal of Chinese Universities

基  金:上海市科技攻关项目(062112065);中国博士后科学基金项目(20060400634);安徽省高校青年教师重点科研资助项目(2006jql220)

摘  要:1 引言 设R^m×n表示m×n实矩阵的全体,A^T表示矩阵A的转置,R(A)和N(A)分别表示矩阵A的值域和零空间,A^+表示矩阵A的Moore—Penrose广义逆,A×B表示矩阵A与B的Kronecker乘积,In this paper, an iterative method is presented to solve the following two problems: (1) Given A ∈ R^n×m, B ∈ R^p×m, D ∈ R^m×m, find X ∈ R^n×p, such that ||A^TXB + B^TXTA - D ||=min. (2) Given X ∈ R^n×p, find X ∈ SE, such that || X -X ||=min, where SE is the solution set of problem (1). Using the iterative method, for any initial matrix X0, a solution X* of problem 1 can be obtained within finite iteration steps in absence of roundoff errors, and the minimum norm of problem 1 can also be obtained by choosing a special initial matrix. In addition, by finding the minimum norm solution X* of the new residual problem || A^TXB + B^TX^TA - D ||=min, the solution of problem (2) can be obtained, i.e., X = X*+ X, where D = D- 2AXB. Finally numerical examples are shown that the iterative method is efficient.

关 键 词:极小范数最小二乘解 迭代解法 矩阵方程 KRONECKER乘积 矩阵A 实矩阵 零空间 广义逆 

分 类 号:O151.21[理学—数学] O241.6[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象