解非线性方程组的一类离散的Newton算法  被引量:5

A CLASS OF DISCRETIZED NEWTON METHODS FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS

在线阅读下载全文

作  者:陈志[1] 高旅端[1] 邓乃扬[2] 

机构地区:[1]北京工业大学 [2]北京农业工程大学

出  处:《计算数学》1998年第1期57-68,共12页Mathematica Numerica Sinica

基  金:国家自然科学基金;北京市自然科学基金

摘  要:This paper discusses a class of discretized Newton methods for solving systems of nonlinear equations. The number of function evaluations requred by the new discretized algorithm is about half of the classical discretized Newton method as Brown and Brent methods. The approximation given by the algorithms to F’(x) is strongly consistent. The algorithms can reduce to the Newton method when the difference stepsize h approaches to zeros but Brown and Brent methods can’t do it. Numerical results show the algorithms are efficient.This paper discusses a class of discretized Newton methods for solving systems of nonlinear equations. The number of function evaluations requred by the new discretized algorithm is about half of the classical discretized Newton method as Brown and Brent methods. The approximation given by the algorithms to F'(x) is strongly consistent. The algorithms can reduce to the Newton method when the difference stepsize h approaches to zeros but Brown and Brent methods can't do it. Numerical results show the algorithms are efficient.

关 键 词:Brown方法 零空间 非线性代数方程 牛顿法 

分 类 号:O241.7[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象