一种通用的RBF网络非线性动态系统逆控制  

A general nonlinear system inverse control based on RBFN

在线阅读下载全文

作  者:李娟[1] 张绍德[1] 刘根水[1] 

机构地区:[1]安徽工业大学电气信息学院安徽省电力电子与运动控制重点实验室,安徽马鞍山243002

出  处:《工业仪表与自动化装置》2009年第2期106-109,共4页Industrial Instrumentation & Automation

摘  要:针对任意复杂非线性系统,提出一种通用的RBF网络动态系统逆控制方案,并提出了一种通过对聚类半径进行"粗调"和"细调"的最近邻聚类学习算法,利用构造伪系统的方法构成一种对非最小相位同样有效的神经网络动态逆控制与PID控制相结合的在线自学习控制策略。仿真研究证明,该控制策略不仅能使多种非线性对象跟踪多种参考信号,而且抗干扰能力和鲁棒性也很好。A novel scheme of RBF neural network dynamic inverse control was proposed for arbitrary complex nonlinear. Using the dynamic nearest neighbors clustering algorithm to train the RBF neural network. The crude regulation and fine regulation method was introduced in to guarantee the rationality of clubman. Through constructing pseudo - plant, a method of on - line self - learning control strategy was introduced ,which combines inverse control based on RBFN with PID control. The method was still effective to the nonlinear non - minimum phase system. The simulation results demonstrated that the inverse control strategy can not only make manifold nonlinear objects track multi - reference signals, but also pos- sess resistance to disturbance and excellent robustness.

关 键 词:RBF神经网络 非线性非最小相位系统 最近邻聚类算法 伪系统 

分 类 号:TP273.2[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象