检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《吉林大学学报(理学版)》2009年第6期1185-1190,共6页Journal of Jilin University:Science Edition
基 金:吉林省科技发展计划项目基金(批准号:20030106)
摘 要:利用矩阵的奇异值分解和矩阵的Kronecker乘积,讨论构造对称次反对称矩阵M,C和K,使得二次约束Q(λ)=λ^2M+λC+K具有给定特征值和特征向量的特征值反问题.首先证明反问题是可解的,并给出了解集SMCK的通式.进而考虑了解集SMCK中对给定矩阵(M,C,K)的最佳逼近问题,得到了最佳逼近解.The inverse eigenvalue problem of constructing symmetric and skew anti-symmetric matrices M,C and K of size n for the quadratic pencil Q(λ)=λ^2M+λC+K so that Q(λ) has a prescribed subset of eigenvalues and eigenvectors was considered by means of singular value decomposition of matrix and Kronecker product of matrices.The problem was firstly improved to be solvable and the general expression of the solution to the problem was provided.The optimal approximation problem associated with SMCK was posed,that is,tofind the nearest triple matrix (M, C,K) from SMCK. The existence and uniqueness of the optimal approximation problem was diseussed and the exoression was provided for the optimal approximation problem.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15