带有不连续系数的线性输运方程差分格式的收敛性  

CONVERGENCE OF DIFFERENCE SCHEME FOR LINEAR TRANSPORT EQUATION WITH DISCONTINUOUS COEFFICIENT

在线阅读下载全文

作  者:张亚楠[1] 吴宏伟[1] 

机构地区:[1]东南大学数学系

出  处:《计算数学》2010年第3期285-304,共20页Mathematica Numerica Sinica

基  金:国家自然科学基金(10871044);江苏省自然科学基金(BK2007101)资助项目

摘  要:提出了一个基于三角形网格的显式差分格式逼近带有不连续系数的线性输运方程.通过对数值解的有界性、TVD(total variation decreasing)和空间、时间方向的平移估计,利用Kol-mogorov紧性原理证明了数值解在Lloc1模下收敛于初值问题的唯一弱解.从而得到了初值问题解的存在唯一性和关于初值的稳定性.数值算例表明本文提出的格式计算方便而且比Lax-Friedrichs格式更有效.An explicit finite difference scheme for the linear transport equation is proposed. The scheme is built on triangular meshes. Based on the L∞bounds, TVD(total variation decreas- ing) and translation estimates of numerical solution, it is shown by means of Kolmogorov compactness method that the numerical solution converges to the weak solution of the initial value problem in the L}oc-norm. The theoretical results show that there exists a unique weak solution to the initial value problem which has the following properties: TVD, stable with respect to initial data. Several numerical experiments are presented to support our theoret- ical results. The numerical results also show that the method in this paper is convenient for computing and more effective than Lax-Friedrichs scheme.

关 键 词:不连续系数 输运方程 差分格式 收敛性 紧性 

分 类 号:O175.8[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象