检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]陆军指挥学院,南京210045 [2]东南大学数学系,南京210096
出 处:《南京大学学报(数学半年刊)》2010年第2期218-229,共12页Journal of Nanjing University(Mathematical Biquarterly)
基 金:Supported by Natural Science Foundation of China(Grant Number 10871044)
摘 要:本文考虑经典的一维Stefan问题的数值求解.借助于Landau变换,构造了一个三层线性化Crank-Nicolson型差分格式来确定温度分布和动边界的位置.用能量分析方法证明了差分格式的唯一可解性。数值例子说明了差分格式的无条件稳定性和二阶收敛性.This article is concerned with the numerical solution of the classical one dimensional phase Stefan problem.A Landon-type transformation is introduced to make the problem on a fixed domain.A new function transformation is introduced to make the nonlinear boundary condition be a linear one.A linearized three-level difference scheme of Crank-Nicolson-type is constructed to determine the temperature distribution and the position of the moving boundary.The unique solvability of the difference scheme is proved by the energy method.A numerical example is presented to demonstrate the unconditional stability and second-order convergence of the finite difference scheme.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117