基于微分几何的非完整移动操作臂解耦控制  被引量:1

Decoupling control of nonholonomic mobile manipulators based on differential geometry

在线阅读下载全文

作  者:马良[1] 闫继宏[1] 赵杰[1] 陈志峰[1] 

机构地区:[1]哈尔滨工业大学机器人技术及系统国家重点实验室,哈尔滨150080

出  处:《高技术通讯》2011年第4期398-403,共6页Chinese High Technology Letters

基  金:863计划(2006AA04Z245)和哈尔滨市人才专项(2007RFQXG046)资助项目.

摘  要:针对在非完整移动操作臂(NMM)系统协调控制中传统解耦线性化方法所带来的局部线性化及近似线性化等问题,采用微分几何方法,通过适当的微分同胚和非线性反馈实现NMM系统多输入多输出非线性解耦控制,将多变量、强耦合、非线性的复杂系统精确转换为线性解耦系统。由NMM系统的状态方程建立其仿射非线性系统模型,并进行解耦条件验证,通过微分几何方法得到NMM的线性解耦系统,同时对解耦后的线性子系统设计PD轨迹跟踪控制器。仿真结果表明该控制器具有良好的跟踪效果,并验证了利用微分几何方法解耦后线性系统的正确性。The differential geometry method was applied to coordinated control of a nonholonomic mobile manipulator (NMM) system to solve the problems of local linearization and approximate linearization caused by using conventional linearization methods. The differential geometry method can realize the decoupling control of multi-input multi-output nonlinearization in a NMM system by diffeomorphism and nonlinear feedback, and transform accurately a multivariate, strong-coupling and nonlinear system into a linear-decoupled system. An affine nonlinear system was built up according to the state equa- tions of the NMM system, and the decoupled conditions were validated. The linear-decoupled system of the NMM was ob- tained by the differential geometry method, and the PD trajectory tracking controller was designed for the linear-decoupled subsystem. The simulation results show the controller has the better tracking effect, and the linear system decoupled by differential geometry method has its validity.

关 键 词:微分几何 非完整 移动操作臂 解耦 非线性 

分 类 号:TP273.2[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象