检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭超于
机构地区:[1]武汉成人教育学院江汉分校
出 处:《郧阳师范高等专科学校学报》1993年第2期94-98,共5页Journal of Yunyang Teachers College
摘 要:在研习数学的过程中,常需对定理或者习题举出反倒,这有利于对概念与定理的正确理解及对问题的深入钻研。在历史上与现代数学的发展中,均可看到举反例的重大作用。(一)什么是举反例反例者,反驳之例也,与命题结论不尽相同之例也,反例只需一个,足使命题不真,促使人们去创建新命题或修订原命题。举反例与反征法不同:“反征法”
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229