基于PSO-SVM的白酒品质鉴别电子鼻  被引量:6

Liquor recognition electronic nose based on PSO-SVM

在线阅读下载全文

作  者:蒋鼎国[1] 周红标[2] 耿忠华[2] 

机构地区:[1]淮阴工学院科技处,江苏淮安223003 [2]淮阴工学院电子与电气工程学院,江苏淮安223003

出  处:《中国酿造》2011年第11期149-152,共4页China Brewing

基  金:江苏省高校自然科学基金资助项目(08KJA460001);江苏省教育厅成果转化项目(Jh10-49);淮安市科技支撑项目(SN1045);淮阴工学院科技项目(HGC1009)

摘  要:研制一套白酒品质识别电子鼻,对检测样品的气味数据进行预处理,提取稳态响应值,并作为支持向量机(support vectormachine,SVM)分类模型的输入。为提高识别的准确度,利用粒子群算法(particle swarm optimization,PSO)来优化SVM的参数c和g。不同品质的白酒所对应的电子鼻传感器响应特性不同,PSO-SVM分类模型的识别准确率达到了97.5%。结果证明基于PSO-SVM分类模型具有较强的学习能力和泛化能力,可用于白酒品质鉴别电子鼻。In this paper, the classification model of support vector machine (SVM) for liquors was established. To improve the accuracy of typical samples, the modeling parameters c and g for SVM were optimized by particle swarm optimization (PSO). The simulative results indicated that the classification accuracy of four kinds of liquors samples which were acquired by electronic nose reached 97.5% based on PSO-SVM. The liquors recognition electronic nose had different characteristic response signals for them, which could recognize Yanghe, Jinshiyuan, Shuangge and Erguo- tou. The PSO-SVM model has good ability both in learning and generalization, and the algorithm can be effectively used in liquors recognition by electronic nose.

关 键 词:白酒识别 电子鼻 支持向量机 粒子群算法 

分 类 号:TS261.7[轻工技术与工程—发酵工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象